
GOLDSMITHS, UNIVERSITY OF LONDON

FINAL YEAR PROJECT

’Walkies’; An Infinite Runner-style Video
Game made with Unity Game Engine

Author:
Molly MASON
33460899

Supervisor:
Frederic Fol LEYMARIE

A thesis submitted in fulfillment of the requirements
for BSc Computer Science Degree

May 17, 2019

i

Abstract
Video games are among the most popular form of media nowadays; accessible on
the majority of technical devices and appealing to people of all backgrounds. As a
result of this popularity, there is no lack of available tools, tutorials, and software
requiring as little as no technical ability; allowing for an explosion of independent
games to be made and shared with the world. In this paper, the project ‘Walkies’,
an infinite runner video game made using Unity game engine for desktop devices,
is discussed and explored from conception to final release. ‘Walkies’ takes place in
a quaint suburban town, and features AI agent implementation, alongside a variety
of infinite runner-style levels that implement multiple techniques, such as random
generation spawning.

ii

Acknowledgements
I would primarily like to thank my supervisor Frederic Fol Leymarie for helping
guide me through the process, helping me stay on track as well as providing valu-
able help and feedback as I planned and implemented my project.

Additionally, I would like to express my gratitude to my family and friends who
took their time to playtest my project, and provide me with a ton of varied feed-
back through both survey and conversation form. A big thank you to my friends
Kelsey and Jonathan, whom playtested different versions of the game repetitively,
determined to find any and every bug, and break the game in every possible way!

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1
1.1 Motivation . 1
1.2 Aims . 1
1.3 Report Structure . 3

2 Background 4
2.1 Gameplay . 4

2.1.1 Genre . 4
2.1.2 Platform . 5
2.1.3 Gameplay . 6
2.1.4 Balancing . 7

2.2 Quality . 8
2.2.1 Graphics . 8
2.2.2 Bugs . 9

2.3 Business . 10
2.3.1 Monetisation . 10
2.3.2 Marketing . 11

2.4 Post-Release . 11
2.5 Conclusion . 12

3 Specifications 13
3.1 Gameplay Requirements . 13
3.2 AI Requirements . 14
3.3 UI Requirements . 15
3.4 Graphical Requirements . 16

4 Design and Implementation 17
4.1 Player Controls . 18

4.1.1 Player Movement . 19
4.1.2 Other Controls . 21

Pause . 21
View Mode . 21

4.1.3 Player Interaction . 22
Level Loading . 22
Dog Companion . 23

4.2 AI . 26
4.2.1 Spawning . 26
4.2.2 Behaviour . 27

Choose Action . 27

iv

Idling, Walking, Running . 28
Flocking . 29
Destination Reset . 30

4.3 Levels . 31
4.3.1 Level Loading . 31
4.3.2 Road Movement . 32
4.3.3 Obstacles and Power-ups . 33

Spawning . 33
Behaviour . 34

4.4 UI . 36
4.4.1 Start Interface . 36
4.4.2 Pause Interface . 37
4.4.3 Bulletin Board Interface . 37
4.4.4 Level Over Interface . 38
4.4.5 Level Overlay . 38

4.5 Graphics . 39
4.5.1 Environment . 39

Models . 39
Hub . 40
Levels . 40

4.5.2 Characters . 40
Models . 40
Animation . 41

4.6 Scrapped Features . 41
4.6.1 Saving . 42
4.6.2 Reward System . 42
4.6.3 AI Responses . 42

5 User Guide 44
5.1 Technical Specifications . 44
5.2 User Controls . 44
5.3 Gameplay . 45

5.3.1 Hub Gameplay . 45
5.3.2 Level Gameplay . 46

5.4 Interface . 47
5.4.1 Start Interface . 47
5.4.2 Pause Interface . 48
5.4.3 Bulletin Interface . 48
5.4.4 Level Over Interface . 50

6 Testing 51
6.1 White-box Testing . 51
6.2 Black-box Testing . 53

6.2.1 Conclusion . 53

7 Evaluation 54
7.1 User Evaluation . 54

7.1.1 User Feedback . 54
7.1.2 Improvements . 56

7.2 Specification Evaluation . 57
7.2.1 Gameplay requirements . 57

v

Enjoyable to play? . 57
Ability to explore hub scene, with appropriate collisions and

interactions? . 57
Ability to access infinite runner levels from various points in

the hub scene? . 57
Infinite runner levels with moving roads, randomly spawned

obstacles or power-ups, life system, and score system? 57
Appropriate balancing - in terms of level difficulty, overall player

control sensitivity/speed, and AI action weighting? . 57
Reward system - hat shop, ability to purchase hats for stars? . . 57

7.2.2 AI requirements . 58
Ability to perform a variety of actions: idling, walking, run-

ning,and flocking? . 58
Ability to perform actions in a weighted fashion? 58
Ability to gain a dog that follows the player upon interacting

with the dog AI? . 58
Ability to express discontent upon collision with the player? . . 58

7.2.3 UI requirements . 58
Overall consistent, thematic, and stylistic design? 58
Start menu - capable of starting or quitting the game? 58
Pause menu - capable of pausing game from hub or levels, and

quitting the game? . 58
Bulletin menu - contains details about controls and gameplay

to inform the player? 58
Level UI - capable of displaying updated lives and score 59

7.2.4 Graphical requirements . 59
Overall consistent, thematic, and stylistic design? 59
Appropriate sizing and placement of models? 59
Believable walk, run, and idle animation cycles? 59

7.3 Conclusion . 59

8 Conclusion 60
8.1 Overview . 60
8.2 Future Work . 60
8.3 Final Comments . 61

Bibliography 62

A Walkies Code 66
A.1 AIBehaviour.cs . 66
A.2 AIDogBehaviour.cs . 72
A.3 AISpawn.cs . 77
A.4 BulletinUI.cs . 78
A.5 LevelLoad.cs . 81
A.6 LevelOverMenu.cs . 83
A.7 LevelOverUIText.cs . 85
A.8 LevelPauseMenu.cs . 85
A.9 LevelPlayerController.cs . 87
A.10 LevelUIText.cs . 90
A.11 MoveFloor.cs . 90
A.12 PauseMenu.cs . 94

vi

A.13 PlayerController.cs . 96
A.14 SpawnBehaviour.cs . 103
A.15 StartMenu.cs . 105

B Walkies Assets 107

C Walkies Survey 117

D Weekly Logs 121
D.1 Week 1 – w/c 21/01/2019 . 121
D.2 Week 2 – w/c 28/01/2019 . 121
D.3 Week 3 – w/c 4/02/2019 . 122
D.4 Week 4 – w/c 11/02/2019 . 122
D.5 Week 5 – w/c 18/02/2019 . 123
D.6 Week 6 – w/c 25/02/2019 . 123
D.7 Week 7 – w/c 4/03/2019 . 123
D.8 Week 8 – w/c 11/03/2019 . 124
D.9 Week 9 – w/c 18/03/2019 . 124
D.10 Week 10 – w/c 25/03/2019 . 125

E Original Proposal 126
E.1 Introduction . 126
E.2 Methods/Skills . 126
E.3 Project Evaluating . 126
E.4 Project Planning . 127
E.5 References . 127

F Design Document 128
F.1 Overview . 128
F.2 Controls . 129
F.3 Levels . 129
F.4 Environment . 130
F.5 GUI . 131
F.6 Other . 132

F.6.1 Hat shop . 132
F.6.2 Day/Night system . 132
F.6.3 Weather system . 132
F.6.4 Loading screen . 133

G Preliminary Project Report 134
G.1 Introduction . 134
G.2 Aims and Objectives . 134

G.2.1 Controls . 134
G.2.2 Game levels . 135
G.2.3 Game Environment . 135
G.2.4 GUI . 136
G.2.5 Other . 136
G.2.6 Summary . 137

G.3 Methods . 137
G.4 Project Plan . 137
G.5 Progress to Date . 138
G.6 Planned Work . 139

vii

G.7 Appendix . 139
G.7.1 Appendix A . 139

G.8 References . 141

viii

List of Figures

2.1 Super Mario Galaxy . 6
2.2 Candy Crush . 8
2.3 Detroit: Become Human . 9
2.4 Assassin’s Creed: Unity . 10
2.5 Goat Simulator . 10

4.1 Scene Flowchart . 18
4.2 Control Code . 20
4.3 Animator . 20
4.4 Pause Code . 21
4.5 View Mode Toggle Code . 22
4.6 Level Load Code . 23
4.7 Dog Companion Code 1 . 24
4.8 Dog Companion Code 2 . 25
4.9 AI Spawn Code . 26
4.10 AI Flowchart . 27
4.11 AI Action Code . 28
4.12 NavMesh Surface . 29
4.13 AI Flock Code . 30
4.14 AI Reset Code . 30
4.15 Level Load Switch Code . 31
4.16 Level Load Difficulty Code . 32
4.17 Road Movement Diagram . 33
4.18 Road Chain Code . 33
4.19 Road Spawn Code . 34
4.20 Collision Switch Code . 35
4.21 Spawn ’Killbox’ . 35
4.22 Start Button Code . 36
4.23 Quit Button Code . 37
4.24 Bulletin Flowchart . 37
4.25 Level Over Star Code . 38
4.26 Level Overlay Code . 39
4.27 Collider . 39
4.28 Level Set Dressing . 40
4.29 Character Models . 41
4.30 Cycle Reference . 41
4.31 Player Baseball Cap . 42

5.1 User Guide Controls . 44
5.2 User Guide Bulletin . 45
5.3 User Guide Level Indicators . 45
5.4 User Guide AI . 46
5.5 User Guide Level Gameplay . 46

ix

5.6 User Guide Start Menu . 47
5.7 User Guide Pause Menus . 48
5.8 User Guide Bulletin Home . 48
5.9 User Guide Bulletin About . 49
5.10 User Guide Bulletin Controls . 49
5.11 User Guide Level Over Menu . 50

7.1 Survey Results 1 . 54
7.2 Survey Results 2 . 55
7.3 Survey Results 3 . 56

x

List of Tables

3.1 Gameplay requirements . 13
3.2 AI requirements . 14
3.3 UI requirements . 15
3.4 Graphical requirements . 16

4.1 Object spawns . 34

6.1 Test Case 1: Player Controls . 51
6.2 Test Case 2: Level Load (for all levels) 52
6.3 Test Case 3: Road Moving . 52
6.4 Test Case 4: Spawn Collisions . 52
6.5 Test Case 5: Dog Companion . 52
6.6 Test Case 1: Graphical Requirements . 53
6.7 Test Case 2: Appropriate Balancing . 53
6.8 Test Case 3: Intuitive UI . 53

xi

List of Abbreviations

AI Artificial Intelligence
MTX Micro Transactions
RPG Role Playing Game
VR Virtual Reality
UI User Interface

1

Chapter 1

Introduction

1.1 Motivation

From puzzle to shooter, adventure to platform, mobile to virtual reality, video games
have become an increasingly prominent media form throughout the modern world.
The possibilities within game development are endless; countless genres to choose
or mix and match from, various forms of device to play on, and numerous target
audiences to aim at. This is why my project covers the theme of gaming, with my-
self delving into the realm of game development; encompassing a variety of skills,
primarily technical, however also exploring the graphical side of creation.

Thus, deciding to make a video game provides me the freedom to implement
anything I want, whilst improving existing technical skills; i.e. programming, and
learning new skills along the way; such as 3D modelling, and animation. Addition-
ally, video games are inherently designed to be a fun form of entertainment; who
doesn’t like entertainment?

As previously touched upon, game development contains endless possibilities;
specifically why it peaks my interest, as it allows developers complete creative free-
dom to do as they wish. With no ‘golden formula’ of how to create a successful video
game, this also lessens restrictions on what type of video game should be made, and
how it should be gone about; the decision can be left up to the developer to decide.
With such a huge pool of target audiences to focus on, it is likely that any game will
be found appealing by at least someone; while similarities can be noticed between
commercially successful games, there is no guarantee or predictability of a games’
success until release - and even then, games can blow up years after their initial
release.

Another key point that draws me to game development is that little to no spe-
cialised skills are required; be it a technical or graphical-based skillset. For example,
one can make a pixel-style RPG purely using GameMaker Studio and Paint.net, with
limited skills prior. This is one reason pixel art is so popular among indie and in-
dependent developers - anyone can make it, or at least easily learn how to from the
endless tutorials available across the web. In addition to this, masses of free high-
quality assets can be found across the internet for use in various game genres and
engines; meaning you don’t need to be any sort of professional artist in order to
create an aesthetically pleasing game.

1.2 Aims

My aim of this project is to develop a 3D game of the infinite runner genre - some
examples of other games within this genre being Subway Surfers, and Temple Run.
The infinite runner genre is arguably aimed at a more casual, and wider audience;

Chapter 1. Introduction 2

this, at least in part, is due to the widespread availability of such games, with them
generally being available on mobile devices, thus players being able to dip in and
out of them with ease. Infinite runners provide simple and straightforward, yet
addictive gameplay; you can’t pause the game and continue at a later point, you
have to continue in an attempt to beat your high score - avoiding obstacles and
collecting power-ups for as long as possible.

Alongside the infinite runner aspect of my game, there will be a open hub world,
allowing players free roam to do the levels as they wish; non linearly. The theme
of the whole game will be based around dog walking - and thus the name ‘Walkies’
comes into play, with the term typically used to inform one’s dog they are going on
a walk. Appealing to a younger audience, the art style will follow that of bright,
cheerful, cartoonish and colourful.

Lastly, I aim to introduce an aspect of Artificial Intelligence (AI) into the game.
This aspect will involve both dog and human AIs wandering around the open hub
world, providing a form of ‘life’ to the game. These AIs will be somewhat basic;
able to perform a few actions, but not being a primary focus of gameplay. Further
specific aims of the project are to produce a good-quality, fully-working game for
desktop, with the vast majority of graphical assets produced by myself; allowing me
full control over the visual aspect of the game.

Technically, implementing such a project will primarily involve knowledge of
the Unity3D game engine; my software environment of choice for development. It
will also require knowledge of C# programming language, and Blender software -
again my software of choice for graphical modelling and animation development.
In addition to technical skills, I must be aware of features and common practices of
game development - such as UI design, AI design, environment design - and how
infinite runners specifically work.

Already proficient in Java, I will be required to learn C# - which shouldn’t prove
to be too much of a challenge due to their similarities. I expect the main hurdles
throughout development to be broadening my knowledge of Unity, and learning
how to model and animate in Blender; having only made use of Unity briefly in the
past, and having never touched Blender.

My experience of having played multitudes of video games for at least half of
my life provides me with at least some familiarity, expectations, and understanding
of the features and common practices used within game development. Brief generic
research into the infinite runner genre has already enlightened me to the illusionary
method used in many infinite runners; the player themselves is not moving, but
the floor is - either methodically or randomly spawning currency, power-ups, and
obstacles along the way.

By the end of this project I thus aim to learn at least the basic process of game
development, C#, basic AI development, how to animate and model in Blender, and
how to use Unity in more depth; such variety, complexity, and creativity in content
providing a alluring pull to this project.

Chapter 1. Introduction 3

1.3 Report Structure

Chapter 2: Background
This chapter covers the potential problematic aspects to be considered when mak-
ing a game. It discusses a wide range of game development considerations that may
need to be taken into account when making this project, as well as providing nu-
merous examples of games that are especially known for overcoming any problems
within these aspects.

Chapter 3: Specifications
This chapter specifies the various requirements for the project - in terms of gameplay,
AI, interfaces, and graphical needs - that should be met in order for the project to be
seemed successful. Additionally, each requirement is provided with justification for
their inclusion.

Chapter 4: Design and Implementation
This chapter delves into the design and implementation of each aspect of the project.
It goes through each section individually - controls, AI, levels, UI, graphics - docu-
menting the process from inception to final version. Design decisions are accounted
for along the way.

Chapter 5: User Guide
This chapter relies mainly on visuals to provide a guide to the user on how to play
the game. It thus features various labelled screenshots of the game in which to do
so.

Chapter 6: Testing
This chapter reports the testing that was carried out throughout the project - both
white and black box. Each test case is is noted as fulfilling or failing to meet its
requirements.

Chapter 7: Evaluation
This chapter evaluates in detail each aspect of the project. User feedback and survey
results from playtesting are discussed, as well as the specifications from Chapter 3 -
whether they have been met, and can be considered a success, and why.

Chapter 8: Conclusion
This chapter concludes the project, reflecting on the process and final product. It
also discusses possible future work that could occur; improvements and additional
features that could be added to the game. The report is wrapped up with some final
thoughts.

4

Chapter 2

Background

2.1 Gameplay

Creating a video game doesn’t provide a typically obvious ‘problem’ to solve; in-
stead, game development presents a variety of different problems, some of which I
will cover throughout this chapter.

Due to the complexity of video games, and the harnessing of so many different
skills, it is no surprise that making them presents an entirely vast and unique set
of problems to overcome throughout the development process in order to attempt
to create a ‘successful’ game. Problems that can pop up during development in-
clude, but are not limited to: ensuring fun gameplay, originality, game balancing,
monetisation, intuitive controls, choosing a successful genre and platform, gripping
storytelling, bug-free, and replayability.

Some of these issues will not apply to this project generally - i.e. marketing and
monetisation - however some will also not apply purely due to the nature of the
genre - i.e. storytelling.

2.1.1 Genre

One of the first aspects to consider when designing a game would be that of genre.
Will it be a roleplaying game? A racing game? A shooter game? A puzzle game?
And so on. Genre will define and affect all the rest of the game content, thus it is one
of the first hurdles to get through.

Some genres prove to be more popular than others, such as shooters, adventure
games, role playing games (RPGs), and platforms steadily holding popularity over
time. Series such as Call of Duty (shooter), The Elder Scrolls (RPG), and Mario games
(platformer) prove this popularity, with subsequent games in these series holding up
to the same success, if not more, as their predecessors. For example, Skyrim is the
13th most sold video game ever (Wikipedia, 2019), despite being the fifth game in
the Elder Scrolls series, and there not being a lack of RPGs to choose from. An aspect
adding to this popularity however is no doubt the credibility of the games studio;
Bethesda (creator of the Elder Scrolls) being one of the most well-known studios to
date.

In recent years, battle royales have significantly risen in popularity, with games
like Fortnite and PUBG taking the lead. Jumping on the popular genre bandwagon
doesn’t guarantee success; too many of the same type of game can oversaturate the
market, as well as the possibility of the game launching after the hype of such a
popular genre has died down.

However, deciding on a niche genre won’t necessarily automatically make the
game less successful, if it is looked at not purely from a commercial perspective, but
instead, say, purely the satisfaction of the player base. More niche genres, or just

Chapter 2. Background 5

typically less-popular genres, are fundamentally aimed at a smaller audience, and
thus less commercial success is to be expected.

In relation to my project, infinite runners are definitely a more popular genre
- typically mobile-based, as touched upon before, or a section as part of a larger
wider genre game. Subway Surfers, Temple Run, and Super Mario Run are all
well-known games that are part of the infinite runner genre, and all extremely com-
mercially successful; each being within the top 15 most played mobile games ever.
Subway Surfers comes in 13th place with 231 million players as of December 2018,
Super Mario Run coming in 10th place with 300 million players as of August 2018,
and Temple Run coming in 6th place with 500 million players as of September 2013
(Wikipedia, 2019).

Super Mario Run is the only game where it could be argued that its popularity
in part is due to the credibility of the company - having being developed by Nin-
tendo; one of the most established games studios in the world - with Temple Run
and Subway Surfers instead being their developers’ best-known games (Wikipedia,
2019).

2.1.2 Platform

Along with genre, the platform in which the game will be made for is also one of the
first aspects to be considered - necessary to decide the development environment,
controls, language, and software to be used! The main platforms to choose from are
mobile, PC, console, and Virtual Reality (VR) - each coming with their own pros,
cons, and restrictions.

Mobile games are typically more casual, less complex, and aimed at a wider au-
dience. They generally allow for lower graphical capacity of the options, and thus
are not likely to be of genres such as RPGs and adventure games (which generally
boast higher graphics and complex gameplay). As a result of this, mobile games
usually are significantly shorter, and thus rely more on replayability, simplicity, and
addictiveness to stand out within the crowd of the flooded mobile gaming market.
Mentioned in the previous section, Temple Run is a good example of this - the 6th
most played mobile game of all time (Wikipedia, 2019), relying on only a basic game
structure and graphics, whilst providing a simple, casual, yet addictive gaming ex-
perience.

PC games, on the other hand, generally cater towards the more hardcore market
of gamers; being home to most, if not all, triple A games. Similar to mobile games,
game development for PC has been made so easy and widespread that the gaming
market is flooded with multitudes of PC games - varying from low-quality to high-
quality. As a result, many well-loved or high-quality games don’t receive as much
commercial success due to the flooding of the market.

Console games usually come from the same pool as PC games - some successful
games are console exclusive; such as Wii Sports being the 4th best-selling game of all
time with around 83 million sales (Wikipedia, 2019), however the vast majority are
available multi-platform. Unlike PC and mobile game development, console game
development is observably less widespread, and thus potentially easier to get your
game to stand out. Publishing your game on console can also open it up to a wider
set of players; an example being Stardew Valley and Overcooked having released
on the Nintendo Switch. With the Switch being a portable console in addition to a
home console, this has no doubt attracted more casual players to these games, rather
than just the more hardcore PC gamers.

Chapter 2. Background 6

A unique problem to console development however is that of the necessity of
backwards compatibility; that is, will the game be able to work on future versions
of the console? This is not something decided by the game developers, instead the
console developers; and thus might be something to consider when deciding on a
platform to develop for. A good example of this would be the Wii U; Nintendo’s
worst selling console in recent years, with only around 13 million sales (compared
to around 34 million for the Switch, and over 100 million for the Wii (Wikipedia,
2019)). Nintendo home console games are not backwards compatible, thus many
high-quality Wii U games unfortunately ending up being some of Nintendo’s lowest
selling home console games; even if they have high player satisfaction. An easy
workaround is to merely develop the game for multiple platforms.

Lastly, Virtual Reality (VR). VR development, like console development, is more
niche; no doubt due to the higher-end equipment (i.e. VR headsets such as the Ocu-
lus Rift or HTC Vive) being a requirement. Again, however, this could be a benefit in
the sense that it’s easier to get your game to stand out. A downside of VR develop-
ment would be the audience for VR games is significantly smaller than all previously
mentioned platforms; due to the cost of the equipment needed for players.

2.1.3 Gameplay

Gameplay is arguably the most defining aspect of a video game that will determine
its success - obviously, and for good reason; it makes up all of the actual game!

The overarching theme and goal for gameplay would be the ‘fun’ factor. Do
players enjoy playing the game? Originality, storytelling, difficulty, features, and
controls all tie into this factor.

Whilst originality isn’t a necessary ingredient for fun - many games thrive off
copying from others - it’s definitely a bonus to have at least some splash of original-
ity. What does your game have that others don’t? Why will players want to play
your game over others of the same type? Super Mario Galaxy by Nintendo (seen in
Fig. 2.1) is a good example of originality contributing to its success, receiving a score
of 97% on Metacritic (Metacritic, 2019), and 9.7 by IGN (IGN, 2007). Whilst a plat-
forming Mario game at heart, it plays around with physics in unique and interesting
ways to capture the players interest and boost the fun factor.

FIGURE 2.1: Gameplay of Super Mario Galaxy (Goomba Stomp, 2016)

Chapter 2. Background 7

Even if original, complex features don’t always make for good gameplay how-
ever - sometimes, it’s better to stick to implementing more conformative ways. No
Man’s Sky is a good example of falling into this trap - the game received widely
negative review on release due to the fact that it simply wasn’t fun (Game Rant,
2016). The game was considered boring; although it boasted ‘infinite’ procedurally
generated environments to explore, this meant said environments felt repetitive and
empty. In a similar vein to originality is storytelling. Of course, this doesn’t ap-
ply to all genres of games, however in-depth, likable, characters, a gripping and
entertaining plot are typically never looked down upon. For example, this aspect
is performed particularly well in The Last Of Us by Naughty Dog - with the game
receiving a perfect 10/10 review from Eurogamer (Eurogamer, 2014) - with players
and critics alike both raving about and empathising with the games’ characters and
plot.

Controls are an underlying theme that should also be considered when designing
a game. Are the controls intuitive? Are they frustrating? Are they too complex?
Non-conforming controls may lessen the fun value to the player; WASD or the arrow
keys are usually used for player movement, spacebar for jump, and the escape key
for pause. Additionally, the controls should be responsive - the player isn’t going to
have a good time if there is a noticeable few seconds of delay between pressing a key
and the corresponding action being performed. An exception to the rule here would
have to be the games I Am Bread, Surgeon Simulator and QWOP - these games
thrive on frustrating controls (Pocket Gamer, 2015), with the difficult gameplay only
adding to their popularity.

Following on from this is the general difficulty of the game. Too hard and the
player might quit in frustration, too easy and the player won’t find it challenging
enough. Balancing is key to this - I will be discussing this in the next section. A good
rule of thumb is to give the player the option to choose their difficulty level, thus
allowing them to progress and play at their own pace.

A final point to mention would be the replayability value of the game. How long
will the players play this game for? Will they come back to it after completing it (if
it can be completed)? Implementing features such as collectibles, achievements, and
new game+ (ability to restart the game with higher abilities once its been completed)
can attempt to boost replayability value; as well as post-game content (content that
is available to the player after finishing the main game). Fallout 4, for example,
does this well - this RPG game has multiple winding plot paths the player could
take (Game Guides, 2019), encouraging them to play the game multiple times to
experience each of these paths (e.g. firstly play as a ‘good’ character, then secondly
play as an ‘evil’ character).

Genres such as (but not limited to) sports (e.g. FIFA), party (e.g. Super Mario
Party), simulators (e.g. The Sims), sandbox (e.g. Minecraft), and building games
(e.g. City Skylines) usually have an easier time achieving a high replayability value
purely due to the inherent nature of the genres - typically non-linear gameplay with
infinite possibilities.

Ultimately, there is no ‘one size fits all’ for making a fun game - each aspect needs
to be considered and tailored carefully in order to fit with the games platform and
genre expectations, as discussed in the previous sections.

2.1.4 Balancing

Balancing is an integral part of any game. Easily overlooked, as it primarily consists
of just tweaking values, balancing can make or break the game.

Chapter 2. Background 8

Specifically, balancing could involve anything from changing the amount of lives
in a game, to the drop rates of loot, to the difficulty of enemies. It can take a great
deal of repetitive testing to get the balancing of a game just right; with players of
various skill playtesting to provide feedback.

Infinite runner games in particular require balancing for the amount of lives the
player has, the speed of the player or road, and the amount of obstacles, power-ups,
and currency that spawn. Finely tuning these values are a necessity to make the
game feel ‘right’.

2.2 Quality

2.2.1 Graphics

Graphics are a vital component to video games; although this does not necessarily
mean the graphical detail has to be high. Many popular video games don’t have
super realistic or detailed graphics at all, instead the graphical quality preferred to
be consistent, aesthetically pleasing, and fitting with the overall style and theme of
the game. To name one, Candy Crush (seen in Fig. 2.2), the 3rd most popular mobile
game by players, makes use of charming, simplistic, and cartoon-style graphics that
fit its overall theme.

FIGURE 2.2: Candy Crush graphical design (YouTube, 2014)

Generally, it is better to make less-realistic, more stylistic graphics well, than re-
alistic graphics badly - only triple A studios are likely to possess the skill and man-
power necessary to succeed in making quality realistic graphics. Some examples of
such games would be the Assassin’s Creed and Tomb Raider series by Ubisoft, and
Detroit: Become Human by Quantic Dream. The latter of these games was shot us-
ing motion capture to achieve such realistic animations (seen in Fig. 2.3); a costly
process that would likely not be available to smaller studios.

Chapter 2. Background 9

FIGURE 2.3: Motion capture behind-the-scenes and finished graphi-
cal comparison for Detroit: Become Human (YouTube, 2018)

2.2.2 Bugs

An obvious aspect to making a successful game would be to minimise bugs! All
parts of the game should ideally be working correctly, as intended. Game studios
make user of quality assurance and playtesting in an attempt to weed out any possi-
ble bugs or unintended behaviour, thus informing the developers to fix and remove
such bugs or behaviour.

Both larger and smaller game studios can fall prey to publishing an unsuccessful
game due to bugs; namely Assassin’s Creed Unity, being infamous for its graphical
bugs on release (seen in Fig. 2.4), and more recently, Fallout 76 - rated a mere 52%
by Metacritic (Metacritic, 2019), primarily due to its abundance of buggy gameplay.

One way to prevent buggy releases is merely giving the game development more
time to find and fix these bugs. Additionally, some games release betas (unfinished
pre-release of game content) in order to recruit the wider community into providing
feedback and finding bugs that may otherwise have been missed. For example, a
‘Mining and Smithing’ beta (Jagex, 2018) was released in the Massive Multiplayer
Online (MMO) game RuneScape; as it covered a significant update to one of the core
skills in the game, and thus the developers wanted to ensure they overlook as little
as possible.

Chapter 2. Background 10

FIGURE 2.4: Graphical bug in Assassin’s Creed: Unity (Ars Technica,
2014)

On the flip side, ‘buggy’ gameplay can also prove to boost a games popularity
- Goat Simulator is classic example of this, with its unpredictable ragdoll physics
adding to its charm and amusement (seen in Fig. 2.5) However, this is the exception
and not the rule - generally games should not aim to have buggy gameplay.

FIGURE 2.5: Ragdoll physics in Goat Simulator (YouTube, 2016)

2.3 Business

2.3.1 Monetisation

Both a business aspect, and a gameplay aspect, is that of monetisation. Monetisation
can come in various forms, such as microtransactions (MTX) within the game itself,
or having to pay to access the game; in a subscription-based format.

An example of a popular microtransaction monetisation model would be that of
Fortnite - the game itself is free, with Epic Games (the developer) primarily making
money from selling ‘skins’; purely cosmetic outfits and weapons for your character.

Subscription based games on the other hand, can offer either a subscription for
access to wider gameplay - such as RuneScape’s subscription model - or requiring
a subscription to access any gameplay - such as World of Warcraft. The benefit of
having at least some of the game available for free is that it entices players to buy a

Chapter 2. Background 11

subscription who may have not otherwise done so, had they not been able to ‘demo’
the game to see if they enjoyed it.

Monetisation is generally necessary in some format for larger studios with ad-
free games, as the developers need to be paid for their work. The problem faced here
is balancing the pricing and content of the monetisation; too lowly priced and it’s
not reasonably for the amount of development work put in for creation, too highly
priced and few people will purchase it - as per Star Wars Battlefront II, which faced
massive backlash over excessively priced microtransactions back in 2017 (GameSpot,
2017).

Additionally, in terms of microtransaction monetisation, the content being sold
should, as a rule, not boost gameplay - this has shown time and time again to be
unpopular with players due to its unfair advantage - or be too rare to win, if the
microtransaction in question is a loot box.

Microtransaction advertising should not be too ‘in your face’ either - players may
end up ignoring it entirely, or be put off from playing the game at all if they feel
pressured into spending extra money.

2.3.2 Marketing

Marketing is yet another key aspect of releasing a successful game - although ar-
guably not a direct problem of game development itself, it is worth a mention due
to it coming hand-in-hand.

Whether it be paid promotions, commercials, or word-of-mouth, marketing is the
way that games mostly get discovered. Like it or not, good marketing is generally
necessary for a successful game; good marketing can consist of appealing adverts
and targeting the right people who will want to play this game.

A unfortunate point to mention in regards to marketing is that is it much eas-
ier for larger companies. Not only can these companies afford more commercial
material, they will already likely have credibility with many players from previous
games; thus having a lesser need for advertising in comparison to smaller devel-
opment studios. Many indie studios and developers combat this through utilising
social media; it’s cheaper to pay YouTube and Twitch influencers in an attempt to
spread word-of mouth for your game, than it is to purchase bulletin boards all across
a city, or adverts on the TV. For example, Five Nights At Freddy’s (a survival horror
game), developed by one man, Scott Cawthon, gained a cult following after popular
Youtuber PewDiePie played the game on his channel back in 2014 (P Hernandez,
2015).

2.4 Post-Release

Unsurprisingly, a not-often-considered aspect when developing a game is that of
post-release content. As this comes after the game is released, and thus after it’s
usually been deciphered whether the game was a success or not, post-release content
is typically not one of the first problematic aspects that comes to mind when I think
of game development - specifically for non-subscription games.

Subscription games do face this problem, however in a different way. Rather
than being expected to release a few post-release downloadable content packs, these
games players rely on them being consistently updated on at least a semi-regular
basis. Likewise, certain online games (not necessarily subscription-based - for ex-
ample, Fallout 76) also hold this expectation.

Chapter 2. Background 12

Post-release content, be it free or paid for, a time-limited event or permanent,
can bring back inactive players to the game; potentially boosting sales despite not
having a recent release. A vast majority of popular games thus utilise post-release
downloadable content; Grand Theft Auto V, despite having released back in 2013,
was the 11th best selling game in 2018 (Business Insider, 2019) - no doubt due to the
constant free updates its online mode receives, keeping the player base active and
thus the game successful.

2.5 Conclusion

To conclude this chapter, there are endless possible problems to consider when de-
veloping a game. Whilst the perceivable best decision at the time can be made for
the development of the game, it does not necessarily equate to success in either com-
mercial or player satisfaction aspects.

Being a well-known games studio, minimising bugs, getting the balancing just
right, providing fun gameplay with high replayability value, and having consistent
thematic graphics, are all strong characteristics that increase the chance of releasing
a prosperous video game.

13

Chapter 3

Specifications

In a general sense, I set out to create a fully-working, third person, 3D, infinite
runner-style game for PC, using the Unity game engine, set around dog walking.
The game’s assets will be made mostly, if not all, by myself, using Blender for mod-
elling and animation - with the art style following that of colourful and cartoon-ish.

All of the following requirement sections additionally come under the presump-
tive requirements of the system having all parts working with no errors, for PC.

3.1 Gameplay Requirements

TABLE 3.1: Gameplay requirements

Requirement

1 Enjoyable to play overall
2 Ability to explore hub scene, with appropriate collisions and inter-

actions
3 Ability to access infinite runner levels from various points in the

hub scene
4 Infinite runner levels with moving roads, randomly spawned ob-

stacles or power-ups, life system, and score system
5 Appropriate balancing - in terms of level difficulty, overall player

control sensitivity/speed, and AI action weighting
6 Reward system - hat shop, ability to purchase hats for stars

1. This requirement is the most basic underlying demand in order for this project
to succeed. Games, at their core, are designed to be fun, with this having to be
considered in relation to all of the other requirements.

2. The hub scene will be the main area of the game, and thus is a basic require-
ment that needs to be implemented for the game to succeed. The vast majority
of the game is based around and within the hub itself, so this is a necessary
aim to achieve, otherwise the project shall be considered a failure. Appropri-
ate collisions and interactions should be implemented, to meet the ‘all parts
working’ requirement - the player should not be able to access out of bounds
areas, or clip through any models.

Chapter 3. Specifications 14

3. In order to be able to play the infinite runner levels, they must be accessed
from the hub scene. If this requirement is not met, the levels will thus not be
playable; a core aspect of the project aims.

4. Following on from the previous requirement, the levels themselves must be
playable. The levels must have a moving floor, with obstacles and power-ups
in order to fit with the infinite runner genre. Additionally, there must be a form
of life and scoring system in order to determine level progress and success.

5. The game must have appropriate balancing in order for it to be accessible and
appealing to players. The control sensitivity should feel normal - not too fast,
or too slow (potentially frustrating).

There should be varying level difficulties to provide players the option of what
pace they want to play the game at; these difficulties should have correspond-
ing appropriate values, with easy being accessible to non-gamers, and hard
being a challenge for experienced gamers. The values affected may be the
road speed, player speed, rarity of power-ups and obstacles, spawn rate of
power-ups and obstacles, and the scores required in order to earn star ratings.

Furthermore, the AI should have their actions appropriately weighted in order
to present a more natural front.

6. In order to boost replayability value for the game, there should be a form of re-
ward system in order to encourage the player to replay the various levels. This
form will be that of a hat shop, where the player can thus purchase cosmetic
hats in trade for stars they have earned within levels.

3.2 AI Requirements

TABLE 3.2: AI requirements

Requirement

1 Ability to perform a variety of actions: idling, walking, running,
and flocking

2 Ability to perform actions in a weighted fashion
3 Ability to gain a dog that follows the player upon interacting with

the dog AI
4 Ability to express discontent upon collision with the player

1. The AI must be able to carry out various actions; at least one, else it would not
be an AI. Ideally it should be able to perform multiple actions, so it more natu-
rally fits into its environment, and puts it a step above the most basic possible
level of AI. Idling, walking, running, and flocking, are all natural behaviours
for an AI that is based in a suburban town setting. Idling should involve the
AI doing nothing for a set period of time; standing still (in idle animation).
Walking and running should involve guiding the AI to a certain destination
on the map - with it either walking or running to said destination. Flocking
should involve guiding the AI to another AI within the scene.

Chapter 3. Specifications 15

2. These actions should be performed in a weighted manner. Each action should
have a percentage chance of being chosen. More commonplace and thus nat-
ural actions, namely idling and walking, should have a higher percentage of
happening than those of running and flocking.

3. Interacting with a dog AI should provide the player with a dog companion of
their own. This companion will have no abilities of its own, and purely serve
as a cosmetic feature.

4. Upon the player colliding with a human AI, the AI should express discontent
in form of a text box appearing above them, with a sound effect. Initially, the AI
may merely say a ‘Hello’, however after increasingly higher collision amounts,
the AI should express their discontent with the player bumping into them - for
example, saying ‘Leave me alone!’.

3.3 UI Requirements

TABLE 3.3: UI requirements

Requirement

1 Overall consistent, thematic, and stylistic design
2 Start menu - capable of starting or quitting the game
3 Pause menu - capable of pausing game from hub or levels, and quit-

ting the game
4 Bulletin menu - contains details about controls and gameplay to

inform the player
5 Level UI - capable of displaying updated lives and score

1. All of the user interfaces should follow a consistent theme, with a colourful
and cartoon style. The designs should overall be intuitive (obvious labelling
etc.) and easy to use, as well as aesthetically pleasing.

2. The start menu should be a friendly welcome into the game, as it will be the
first thing the player sees and thus sets the scene, providing a straightforward
way to start the game, or quit the game.

3. The pause menu should be a simple interface, purely to serve as a way to pause
the game, and quit the game. This should be available to access from both the
hub, and the level scenes, so the player is unrestricted in where they can pause
and quit the game from (provide them the freedom to play at their pace).

4. The bulletin menu will be the interface that displays important information
about the game, including instructions, about, and controls. This should pro-
vide all the necessary details the player requires, in a concise and readable
format, in order to understand how to play the game.

5. Within the levels, there should be a level UI that displays the current score
and number of lives the player has. This should be constantly updated in real

Chapter 3. Specifications 16

time, to keep the player informed of how they are currently doing. It should be
simple and out-of-the-way, as to not cover up gameplay, yet still easily visible
at a quick glance - thus with appropriate contrasting colouring and font size.

3.4 Graphical Requirements

TABLE 3.4: Graphical requirements

Requirement

1 Overall consistent, thematic, and stylistic design
2 Appropriate sizing and placement of models
3 Believable walk, run, and idle animation cycles

1. Identical to the UI requirements, and thus matching the interface designs, the
graphics of the game should also follow a consistent theme - an aesthetically
pleasing cartoon-ish and colourful style.

2. All of the models should be placed appropriately around the game world. The
models should all be sized to a consistent scale, and set down to decorate the
environments in a natural fashion. This requirement will create an environ-
ment that will primarily help shape what the player should feel and experience
when playing the game; setting the scene.

3. Lastly, the character models should all possess believable walk, run, and idle
animation cycles to contribute to giving the game a more polished and finished
feel. Any other possible animations for models - such as foliage - should also
meet this requirement.

Although not graphics, audio should also follow a consistent and thematic de-
sign, and placed around appropriately.

17

Chapter 4

Design and Implementation

In this chapter, I will be discussing how I initially designed each specific feature for
the game, and how they were ultimately implemented.

Firstly, I decided to choose Unity as my game engine of choice for various reason.
Unity is one of, if not the, most well-known, free, game engines available alongside
Unreal); and for good reason. It receives constant updates, has a huge array of fea-
tures, and there is a mass of learning material available online to help with learning
the software.

Secondly, I went with Blender as my software of choice for modelling and an-
imation, again due to being one of the most widely-known, free, computer graph-
ics software available (alongside Maya). Although it arguably has a steep learning
curve, again, there are copious resources available online to aid with this process.

To preface this section is a description of the game to help your understanding.
The game primarily takes place in a suburban town, with 3 areas: town, park, sub-
urbs. The player spawns in the town area upon starting the game from the start
menu, where they then gain free roam to do as they wish. Various level indicators -
which transport the player to infinite runner-style levels - can be found around this
‘hub’ scene, as well as wandering dog and human AIs. Within the levels, the player
(starting with 3 lives) must avoid obstacles (collision with any results in a life lost)
and gain power-ups (to a maximum of 5 lives). Upon losing all their lives, the player
is faced with a level over interface, with the option to take them back to the hub. The
game can be paused at any time, to quit the application.

A flowchart of the scene managing process can be seen below in Figure 4.1.

Chapter 4. Design and Implementation 18

FIGURE 4.1: A flowchart displaying the scene flow of the game

4.1 Player Controls

Relevant scripts for this section: PlayerController.cs, LevelPlayerController.cs, LevelLoad.cs,
AIDogBehaviour.cs, PauseMenu.cs , LevelPauseMenu.cs, BulletinUI.cs

The player is capable of performing various actions at the press of a key, includ-
ing:

• Forward movement

• Backwards movement

• Rotate camera left

Chapter 4. Design and Implementation 19

• Rotate camera right

• Pause game

• View mode

• Interactions

The most familiar controls for player movement is that of WASD and the arrow
keys, and thus why I chose them for the player movement. Initially, I only had
implemented the arrow keys - I considered this might be more intuitive to a wider,
non-gaming, crowd - however, player feedback led to the additional implementation
of WASD. This provides players with the choice to use their key of preference.

Contrary to various other games, there is no general mouse control for the player
- only within view mode. I opted to exclude this due to preferring keeping the con-
trols simple, and thus arguably easier to get used to. As the gameplay and features
are not extremely complex, the project doesn’t call for a need for more controls.

Pause mode can be activated with either the P key, or the escape key. Again,
initially I had only implemented the P key - P for pause - however ended up imple-
menting the Escape key additionally due to player feedback as it’s akin to WASD in
terms of commonplace use within video games.

View mode is a feature that allows the player to freely look around the game
world. I decided to add this in at a later stage of development to provide the player
with a less restrictive way of viewing their surroundings; after finding myself want-
ing to look at disallowed angles whilst playtesting. The V key was chosen to toggle
this on or off due to ‘view’ beginning with V; the player is less likely to forget the
key if it corresponds to the name of the feature (e.g. I for inventory).

The player can interact with various features throughout the game hub, includ-
ing the dog AI (to gain a dog companion), loading the bulletin board interface, and
loading the levels. Interaction is carried out by holding down the spacebar - an-
other intuitive control within video games. The key must be held down for a short
time as to not potentially irritate the player should they suddenly change their mind
(and thus not want to carry out the interaction), or if they accidentally press it; this
ensures the player actually wants to carry out the interaction.

4.1.1 Player Movement

Player movement is implemented in the update function (checks condition every
frame) in PlayerController.cs and LevelPlayerController.cs with the following steps:

1. Checking whether the appropriate key is held down - W/up for forward, S/-
down for backwards, A/left for camera rotate left (hub only), D/right for cam-
era rotate right (hub only)

2. If appropriate key is down, checking that pause mode is false, and view mode
is false (hub only)

3. If conditions met, setting corresponding animator parameters to appropriate
value (run for forwards, walk for backwards - hub only), transforming the
player location in the corresponding direction * real time * speed (integer vari-
able), and activating the footstep audio (hub only, footsteps constantly acti-
vated within levels)

Chapter 4. Design and Implementation 20

For example, the code for forward movement can be seen below, in figure 4.2:

i f ((Input . GetKey (KeyCode . UpArrow) || Input . GetKey (KeyCode .W)
) && viewMode == f a l s e && PauseMenu . pause == f a l s e)

{
move . S e t I n t e g e r (" RunOn" , 1) ;
f o o t s t e p . Se tAct ive (t rue) ;
transform . T r a n s l a t e (Vector3 . forward ∗ runSpeed ∗

Time . deltaTime) ;

i f (hasDog == true)
{

dogMove . S e t I n t e g e r (" RunOn" , 1) ;
}

}

FIGURE 4.2: The code used to move the player forward

The animator workflow for both the player, and the dog (if the player has one),
can be seen below, in figure 4.

FIGURE 4.3: A view of the player animator controller

Additionally, should the player reach an out-of-bounds area (i.e. they breach the
colliders), the game will teleport the player back to the spawn area. This is carried
out by the game constantly checking if the players’ position coordinates are within
the allowed coordinates, as seen in figure 4 below. Although there are colliders sur-
rounding the playable area, this is a safety net feature implemented as a result of
playtesters succeeding in clipping through certain colliders.

Chapter 4. Design and Implementation 21

4.1.2 Other Controls

Boolean variables exist for both view and pause mode to keep track of the current
state of the game; both are initialised with a false value, which only changes to true
upon carrying out the appropriate action which toggle the modes on (as detailed
below).

Pause

Pause mode provides a way to pause the game from any point. It works by setting
the Pause UI active (game is loaded with it inactive), and the time scale of the game
to 0 (thus freezing time).

i f ((Input . GetKeyDown (KeyCode . P) || Input . GetKeyDown (KeyCode .
Escape)) && B u l l e t i n U I . i s B u l l e t i n O n == f a l s e && viewMode .
viewMode == f a l s e)

{
i f (pause == f a l s e)
{

pause = true ;
pauseUI . SetAct ive (t rue) ;
Time . t imeSca le = 0 . 0 f ;

}
e l s e
{

resumeButton () ;
}

}

FIGURE 4.4: Code showing what happens when the game is paused

The mode is toggled on within PauseMenu.cs, and LevelPauseMenu.cs (for both
the hub and level scenes, respectively) if the player presses down the ‘P’ or ‘Es-
cape’ key, and the following conditions are met: pause mode isn’t currently true,
view mode isn’t currently true (PauseMenu.cs only), and the bulletin interface isn’t
currently being accessed (PauseMenu.cs only). If the game is currently paused, the
mode can be toggled off by pressing the same keys.

View Mode

View mode, only available in the hub scene, utilises a script found I online - this
isn’t a key feature, and I found this script to work extremely well, and thus did not
attempt to implement it myself (Learn Everything Fast, 2017). This mode enables the
player to look around at any angle using the mouse, at the cost of disabling player
movement while it’s true.

The mode is toggled on within PlayerController.cs if the player presses down the
‘V’ key, and the following conditions are met: view mode isn’t currently true, pause
mode isn’t currently true. If the game is currently in view mode, the mode can be
toggled off by pressing the same keys (resetting the camera to as it were).

Chapter 4. Design and Implementation 22

i f (Input . GetKeyDown (KeyCode .V))
{

i f (viewMode == f a l s e && PauseMenu . pause == f a l s e
)

{
viewMode = true ;
cameraMouse . GetComponent<MouseCamera > () .

enabled = true ;
}
e l s e
{

viewMode = f a l s e ;
cameraMouse . GetComponent<MouseCamera > () .

enabled = f a l s e ;
camY = t h i s . transform . eulerAngles . y ;
cameraMouse . transform . eulerAngles = new

Vector3 (camX , camY , camZ) ;
}

}

FIGURE 4.5: View Mode toggle code

4.1.3 Player Interaction

The interaction control is used for both loading levels - once the player is within a
level indicator - and gaining a dog companion.

Level Loading

Player interaction with loading levels and bulletin interface is implemented in Lev-
elLoad.cs and BulletinUI.cs with the following steps:

1. Check if the player is within distance of the level indicator (if radius of level
indicator <= distance)

2. If within distance, check if space is pressed

3. If space is pressed, start counting time - or load bulletin interface

4. If counter breaches a couple of seconds, and space is still held down (timer
variable resets if space is let go of), turn on timer, set fade in animation and
start music active

5. Once timer has reached a few seconds, load corresponding scene

The timer aspect of this, and other parts of the project, is necessary in order to
give the fade in and fade out animations time to fully execute (else the next scene is
loaded at the same time the animation is set to start). I added animations to make
the transition between scenes look more polished.

Chapter 4. Design and Implementation 23

i f (d i s t a n c e <= p a r t i c l e R a d i u s)
{

i f (Input . GetKey (KeyCode . Space))
{

keyHoldTime += Time . deltaTime ;
}

i f (Input . GetKey (KeyCode . Space) && keyHoldTime >=
1 f)

{
timerOn = true ;
fadeIn . Se tAct ive (t rue) ;
s tar tMusic . Se tAct ive (t rue) ;

}
}

FIGURE 4.6: Trigger code for level load

This aspect will be followed up on in section 4.3.1 (Levels: Level Loading).

Dog Companion

The player can gain a dog companion through pressing space whilst colliding with a
dog AI. This companion is a child game object of the player, that is set from inactive
to active upon meeting the following conditions:

In AIDogBehaviour.cs:

1. Check if a dog AI is currently colliding with the player

2. If colliding, check if space is held down, and the player doesn’t already have a
dog (initialised false variable hasDog)

3. If both true, change PlayerController dogType variable to correspond with the
name of the dog AI (dogType initialised with no value), and set hasDog to true

Chapter 4. Design and Implementation 24

void OnColl is ionStay (C o l l i s i o n c o l l i d e r)
{

i f (c o l l i d e r . gameObject . name == " Player ")
{

i f (Input . GetKeyDown (KeyCode . Space) &&
P l a y e r C o n t r o l l e r . hasDog == f a l s e)

{
P l a y e r C o n t r o l l e r . hasDog = true ;
switch (t h i s . name)
{

case "Dog(Clone) " :
P l a y e r C o n t r o l l e r . dogType = 1 ;
break ;

case "Dog (black) (Clone) " :
P l a y e r C o n t r o l l e r . dogType = 2 ;
break ;

case "Dog (blonde) (Clone) " :
P l a y e r C o n t r o l l e r . dogType = 3 ;
break ;

case "Dog (grey) (Clone) " :
P l a y e r C o n t r o l l e r . dogType = 4 ;
break ;

case "Dog (white) (Clone) " :
P l a y e r C o n t r o l l e r . dogType = 5 ;
break ;

}
}

}
}

FIGURE 4.7: Code for gaining a dog companion - in dog behaviour

Then, in PlayerController.cs:

1. Check if hasDog is true, and dogCount (initialised int at 0) is 0 (meaning the
player doesn’t already have a dog)

2. If true, add 1 to dogCount, set a woof sound effect active, set the corresponding
dog child object active, and set the dog animator to the dog child

Chapter 4. Design and Implementation 25

i f (hasDog == true && dogCount == 0)
{

woof . Se tAct ive (t rue) ;
dogCount += 1 ;
switch (dogType)
{

case 1 :
dog . SetAct ive (t rue) ;
dogMove = dog . GetComponentInChildren<

Animator > () ;
break ;

case 2 :
dogBlack . Se tAct ive (t rue) ;
dogMove = dogBlack .

GetComponentInChildren<Animator > ()
;

break ;
case 3 :

dogBlonde . SetAct ive (t rue) ;
dogMove = dogBlonde .

GetComponentInChildren<Animator > ()
;

break ;
case 4 :

dogGrey . SetAct ive (t rue) ;
dogMove = dogGrey .

GetComponentInChildren<Animator > ()
;

break ;
case 5 :

dogWhite . Se tAct ive (t rue) ;
dogMove = dogWhite .

GetComponentInChildren<Animator > ()
;

break ;
}

}

FIGURE 4.8: Code for gaining a dog companion - in player controller

Gaining a dog companion was a feature added as result of playtesting; multiple
players queried whether they could have a dog in the hub scene, as they had one
within the level scene. The game is based around dog walking, thus it makes sense
to provide the player with the ability to have their own dog. A variety of dog colours
are available, to not only add variety and aesthetic value, but give the player the
choice to choose their colour of preference.

Chapter 4. Design and Implementation 26

4.2 AI

Relevant scripts for this section: AIBehaviour.cs, AIDogBehaviour.cs, AISpawn.cs

The AI in this project uses a finite-state machine-like implementation. I opted
for finite state machines, over more complex methods such as behaviour trees, due
to a combination of time constraints (AI is not the core necessity of the project), and
the needs for the game - AIs walking around town don’t particularly require very
advanced actions.

This section refers to both the human and the dog AIs.

4.2.1 Spawning

AISpawn.cs (applied to the terrain of the environment) determines the spawn coor-
dinates for each AI, number of AI to spawn, and what each model for the AI will be.
This is done with the following steps:

1. Placing all the possible models for both dogs and humans into arrays

2. Generating a random value between 15-25, to determine how many AI to
spawn

3. For loop through this value, doing the following each loop:

4. Generate random X, Z, and Q (q for quaternion - value for random Y rotation)
values

5. Generate random value between 0-6 (or 0-5 for dogs) to determine what model
will be used

6. Instantiate human/dog with the value in step 5 as model array index, and
values in step 4 as vector coordinates and euler coordinate

f o r (i n t i = 0 ; i < spawnCount ; i ++)
{

spawnX = Random . Range(−28 f , −10 f) ;
spawnZ = Random . Range(−6f , 72 f) ;
spawnQ = Random . Range (0 f , 360 f) ;
humanI = Random . Range (0 , 6) ;
I n s t a n t i a t e (humans [humanI] , new Vector3 (spawnX ,

0 . 3 f , spawnZ) , Quaternion . Euler (0 f , spawnQ , 0 f
)) ;

}

FIGURE 4.9: Code for spawning AI - humans only

Spawning is implemented in this way to provide variation in gameplay - rather
than statically spawning the same models in the same places on each load.

Chapter 4. Design and Implementation 27

4.2.2 Behaviour

A flowchart displaying an overview of the actions of the AI can be seen below in
Figure 4:

FIGURE 4.10: A flowchart showing the actions and weighting the AI
can take

Choose Action

As seen in the flowchart, the chooseAction() function is rolled every 3-25 seconds if
the AI is stationary (preventing them from abandoning their current destination) to
guide the AI as to their next activity.

The weighting behind each action roll is justified through the following means:

Chapter 4. Design and Implementation 28

• Idle should be a high chance, to provide a more natural environment, rather
than all of the AI moving around constantly

• Walk should be a higher chance than run, reflecting natural behaviour in real
life (people tend to not run to their destinations in public!)

• Flock should still have a fairly reasonable chance, to actually be noticeable -
rather than indifferentiable from walking or running (also, higher chance for
dogs due to wild dogs more likely to hang out in a pack than humans)

Idling, Walking, Running

If idling is selected, simply nothing happens - a free roll.
If walking or running are selected, random X and Z coordinates within a spec-

ified area (the accessible game map) are rolled to determine a vector3 destination
for the AI. This vector is passed to the SetDestination function; utilising Unity’s
NavMesh feature (Github, 2019) - an add-on package for AI that provides simple
pathfinding and utilities. This can be seen in action below, in figure 4.11:

void walk ()
{

nav . speed = 1 ;
Vector3 walkDest inat ion ;
f l o a t destX = Random . Range(−28 f , −10 f) ;
f l o a t destZ = Random . Range(−6f , 72 f) ;
walkDest inat ion = new Vector3 (destX , 0 . 3 f , destZ) ;
d e s t i n a t i o n = walkDest inat ion ;
nav . S e t D e s t i n a t i o n (walkDest inat ion) ;

}

FIGURE 4.11: Code for AI walk & run function (run is mostly identi-
cal)

If the action is running, the AIs speed is increased, and triggers their run ani-
mation on. Walk action, on the other hand, sets the AI to a lower speed, triggering
their walk animation on. The velocity of the AIs NavMesh is constantly checked to
determine which animation should currently be active.

I opted to use Unity’s NavMesh feature for pathfinding again due to time con-
straints - if there’s a perfectly well usable function readily available to use, I’m not
going to spend time reinventing the wheel.

A point to note, is that before the NavMesh system can be used, the NavMesh-
Surface function had to be implemented in the environment; to inform the AI where
and where they could not access, as seen below, in figure 4.12:

Chapter 4. Design and Implementation 29

FIGURE 4.12: A view of the navmesh - displaying AI walkable areas
in blue

Flocking

Flocking, named after flocking behaviour, was chosen as an action for the AI pri-
marily due to humans being social creatures, and dogs being pack animals. This
also provided an opportunity to implement a more advanced action, in comparison
to mere walking.

This function works by finding the nearest AI, and setting their position as the
current AIs destination, as follows:

1. Create array of all other humans/dogs within the game (“FindWithTag”)

2. Create a new array of the same length, and loop through the array in step 1,
filling each value with that of the distance between each human/dog and the
current AI

3. Duplicate the array from step 2, and use a bubble sort algorithm to determine
the distances from lowest to highest

4. If the lowest value is within 5f (i.e. too close - flocking wouldn’t make a notable
difference), increase the lowest value to the next lowest value in the array (if
there are no AIs that aren’t too close the function is broken out of)

5. Set the AIs destination to that of the AI position that corresponds to the lowest
value (as determined from steps 3 and 4).

Step 5 is calculated using the following code, with distances being the array in
step 2, and humans being the array in step 1 (nav = reference to navmesh component):

Chapter 4. Design and Implementation 30

f o r (i n t i = 0 ; i < d i s t a n c e s . Length ; i ++)
{

i f (lowest == d i s t a n c e s [i])
{

t a r g e t = humans [i] ;
f l o c k D e s t i n a t i o n = humans [i] . transform .

p o s i t i o n ;
}

}

d e s t i n a t i o n = f l o c k D e s t i n a t i o n ;
nav . S e t D e s t i n a t i o n (f l o c k D e s t i n a t i o n) ;

FIGURE 4.13: Part of the code for the flock() AI action

Destination Reset

As a precautionary measure, to prevent AIs from infinitely attempting to reach their
destination even if not possible, a reset method is also implemented within the AI
scripts.

Located in the update function, this feature constantly checks this distance from
the AIs current destination to the AI itself. A timer is started once they’re within
a short distance (3f), and the path is reset with a new action rolled if they’ve been
within this short distance of their destination for around 10 seconds - shown below
in figure 4 (nav = navmesh component):

i f (Vector3 . Distance (d e s t i n a t i o n , t h i s . transform . p o s i t i o n) <
3 f)

{
t imer1 += Time . deltaTime ;
i f (t imer1 > 15 f)
{

nav . ResetPath () ;
chooseAction () ;
t imer1 = 0 f ;

}
}

FIGURE 4.14: Code that resets the AIs current destination

Chapter 4. Design and Implementation 31

4.3 Levels

Relevant scripts for this section: LevelLoad.cs, MoveFloor.cs, SpawnBehaviour.cs

4.3.1 Level Loading

Touched upon in section 4.1.3, in addition to simply triggering the level scene, the
levels also require knowledge of the difficulty value and which scene setting to load
- be it the town level scenes, park level scenes, or suburban level scenes.

Scene setting is determined through checking the tag of the level indicator in
LevelLoad.cs - each level indicator object has a tag corresponding to its location (i.e.
indicator within town are tagged “Town”, park tagged “Park”, and suburb tagged
“Suburb”). A switch statement, as shown below, implements this:

switch (t h i s . tag)
{

case " suburb " :
l e v e l S e t t i n g = " SuburbLevels " ;
break ;

case " park " :
l e v e l S e t t i n g = " ParkLevels " ;
break ;

case " town " :
l e v e l S e t t i n g = " TownLevels " ;
break ;

case " manhole " :
l e v e l S e t t i n g = " ManholeLevels " ;
break ;

}

FIGURE 4.15: The switch statement that determines which level set-
ting to load

Difficulty, however, is less straightword in its implementation. Within Player-
Controller.cs, all of the level indicator objects are looped through, and if the player
is within distance of any of them, the corresponding difficulty value is saved to that
script - in a public static variable, enabling it to be accessed from the level scene. This
loop can be seen below in figure 4.16:

Chapter 4. Design and Implementation 32

f o r (i n t i = 0 ; i < l e v e l s . Length ; i ++)
{

d i s t a n c e = Vector3 . Distance (l e v e l s [i] .
transform . pos i t ion , t h i s . transform .
p o s i t i o n) ;

i f (d i s t a n c e <= p a r t i c l e R a d i u s)
{

i f (i >= 0 && i <= 2)
{

d i f f i c u l t y = 1 ; //easy d i f f i c u l t y
value

}
e l s e i f (i >= 3 && i <= 5)
{

d i f f i c u l t y = 2 ; //medium d i f f i c u l t y
value

}
e l s e i f (i >= 6 && i <= 8)
{

d i f f i c u l t y = 3 ; //hardest d i f f i c u l t y
value

}
}

}

FIGURE 4.16: The code that determines the difficulty value of the
level to load

Easy levels are stored in the first 3 positions of the levels array, medium stored
in the next 3, and hard stored in the final 3.

Once the appropriate level has loaded, MoveFloor.cs and LevelPlayerController.cs
retrieve the difficulty value from PlayerController.cs to determine how to alter their
variables in regards to difficulty. The following variables are affected by difficulty:

• Player speed (harder = slower)

• Road speed (harder = faster)

• Item spawn (harder = spawn more often)

I chose these variables to be the defining factors for difficulty due to simplic-
ity (yet effective), and following conventions from other games within the infinite
runner genre.

4.3.2 Road Movement

Levels work by means of the floor moving, with the player stationary. The ‘floor’
consists of 3 roads (bare minimum required - any less and it’s obvious that part of the
floor is teleporting), moving in a conveyor-belt fashion - with each road teleporting
to the back of the conveyor once it reaches a certain point (past the player). To
provide an overview of how the road movement works, is a diagram in figure 4.17:

Chapter 4. Design and Implementation 33

FIGURE 4.17: A diagram showing how the road movement works

Each road has a static variable setting to decide which other road it is ‘chained’
onto the end of (var road), as shown below:

switch (t h i s . name)
{

case " Road1 " :
GameObject road3 = GameObject . Find (" Road3 ") ;
road = road3 ;
break ;

case " Road2 " :
GameObject road1 = GameObject . Find (" Road1 ") ;
road = road1 ;
break ;

case " Road3 " :
GameObject road2 = GameObject . Find (" Road2 ") ;
road = road2 ;
break ;

}

FIGURE 4.18: The code that determines which part of the chain the
current road is a part of

4.3.3 Obstacles and Power-ups

Spawning

Within the road object, various obstacles and power-up objects are procedurally gen-
erated. This is accomplished within MoveFloor.cs, with the following steps:

1. Random value generated based on difficulty levels

Chapter 4. Design and Implementation 34

2. Every x seconds (based on value from step 1), a new object is spawned with
spawnGen() function

The spawn gen function then decides which object to spawn based on weighted
values, as per follows:

TABLE 4.1: Object spawns

% chance Object Type

25% Fire hydrant Obstacle
25% Poop Obstacle
30% Manhole Obstacle
10% Dog bone Power-up
10% Energy drink Power-up

These values have been chosen due to keeping the levels challenging - the obsta-
cles should have a majority chance to spawn, else the level is just full of power-ups
with no challenge (and thus no fun) at all.

Once an object has been chosen, a random coordinate based on the road itself is
generated - so the object is spawned within the bounds of the road. The object is
then instantiated and parented to the road; thus so it moves with it. This can be seen
below in figure 4.19:

spawnX = Random . Range (1 6 , 25) ;
f l o a t zLower = t h i s . transform . p o s i t i o n . z − 2 5 ;
f l o a t zUpper = t h i s . transform . p o s i t i o n . z + 2 5 ;
spawnZ = Random . Range (zLower , zUpper) ;

var o b s t a c l e = I n s t a n t i a t e (spawn , new Vector3 (spawnX ,
0 . 5 f , spawnZ) , Quaternion . i d e n t i t y) ;

o b s t a c l e . transform . parent = t h i s . transform ;

FIGURE 4.19: The code that determines where an object is spawned
on the road

Behaviour

Object spawn behaviour is defined within SpawnBehaviour.cs. This script employs
Unity’s OnTriggerEnter function to tell when there has been a collision between the
player and the spawn object. A switch statement is called to determine whether the
player should lose a life, or gain a life - if the object name corresponds to an obstacle,
a life is lost (and obstacle audio is played), and if the name corresponds to a power-
up, a life is gained (unless lives < 5). A snippet of the complete statement can be
seen below, in figure 4:

Chapter 4. Design and Implementation 35

i f (c o l l i s i o n . gameObject . name == " LevelPlayer " || c o l l i s i o n .
gameObject . name == "Dog" && LevelPauseMenu . pause == f a l s e)

{
l i v e s = L e v e l P l a y e r C o n t r o l l e r . l i v e s ;
switch (t h i s . name)
{

case " f i r e h y d r a n t Variant (Clone) " :
i f (l i v e s >= 1)
{

l i v e s −= 1 ;
L e v e l P l a y e r C o n t r o l l e r .

audioPlayObstacle = true ;
}
break ;

FIGURE 4.20: The code that determines what happens upon collision
with an obstacle

Upon collision, the spawn object is destroyed to prevent double collisions (and
thus losing/gaining multiple lives at once). Lives can also only be lost if the current
lives are >= 1, as, even though the level over menu trigger upon 0 lives, a negative
value could sometimes be obtained if a player collided with 2 different obstacles at
the same.

Additionally, OnTriggerEnter rules when the spawn objects should be destroyed;
upon collision with a ‘killbox’ object located behind the player within each level
scene - seen in figure 4.21. Objects are destroyed after passing the player in order to
prevent them from repeating the conveyor, and potentially adding into a mass.

FIGURE 4.21: The ’killbox’ that destroys objects once they pass the
player

Chapter 4. Design and Implementation 36

4.4 UI

Relevant scripts for this section: BulletinUI.cs, LevelOverMenu.cs, LevelOverUIText.cs,
LevelPauseMenu.cs, LevelUIText.cs, PauseMenu.cs, StartMenu.cs

Interfaces can be viewed in section 5.4

The UIs within the project generally work as follows (with the exception of the
start interface and level overlay):

• Canvas parent game object, with UI details as inactive children

• When condition for interface is met, toggle UI details active

4.4.1 Start Interface

The start interface is the first thing seen when the game is loaded. Containing but-
tons to Start and Quit the game, it follows a simple design as to not overload the
player upon launch.

The startButton() function is applied to the start button UI element, in order for
it to be called once the button is pressed. Once pressed, the timer variable and fade
in animations are triggered, and the hub scene loading after a few seconds (allowing
fade in animation to complete).

publ ic void s t a r t B u t t o n ()
{

fadeIn . Se tAct ive (t rue) ;
timerOn = true ;

}

void Update ()
{

i f (timerOn == true)
{

t imer += Time . deltaTime ;
i f (t imer >= 2 . 0 f)
{

SceneManager . LoadScene ("Hub" , LoadSceneMode .
S ing le) ;

}
}

}

FIGURE 4.22: Code displaying how the timer method works, within
the start button method

The quitButton() function is applied to the quit button UI element, in order for it
to be called once the button is pressed. Once pressed, the following code is executed
in order to quit the application:

Chapter 4. Design and Implementation 37

publ ic void quitButton ()
{

Appl icat ion . Quit () ;
}

FIGURE 4.23: Code that quits the application

4.4.2 Pause Interface

Details on how to toggle the pause interface on and off are discussed in section 4.1.2.
The resumeButton() function is applied to the resume button UI element, in order

for it to be called once the button is pressed. Once pressed, the pause is toggled off,
as seen in figure 4.4.

Hub pause only: Identical to the Start Interface in 4.4.1, the quitButton() function
is applied to the quit button, and calls the code in figure 4.23 to quit the application.

Level pause only: The returnToHub() function is applied to the return to hub but-
ton, and calls the code in figure 4. Identical to the startButton() function in 4.4.1, a
timer is triggered to allow the fade in animation to play 4.22 and load the hub scene.

4.4.3 Bulletin Board Interface

Once the bulletin UI is set active, as detailed in 4.1.3, the bulletin UI home is set
active. From here, it can be navigated to read about the game, and the controls.

Below, in figure 4.24, is a flowchart to visualise how the setActive method works
for this interface:

FIGURE 4.24: A flowchart displaying the flow of the bulletin interface

Chapter 4. Design and Implementation 38

4.4.4 Level Over Interface

The level over interface is set active from LevelPlayerController.cs, once lives <=
0. Within this interface, the final score is taken from LevelPlayerController, and
converted to string for display within the interface.

Nested if statements are utilised to decipher how many stars the player receives,
if any. If the final score is over 200, the player gets one star, over 500 is two stars,
and over 1000 is three stars (figure 4). Balancing was integral to get this component
correct - involving a lot of playtesting across different levels to achieve what felt
right.

score = L e v e l P l a y e r C o n t r o l l e r . d i s t a n c e I n t ; //gets the f i n a l
score from the L e v e l P l a y e r C o n t r o l l e r s c r i p t

i f (score >= 200)
{

s t a r 1 . Se tAct ive (t rue) ; // i f score i s 200 or over ,
player ge ts 1 s t a r
i f (score >= 500)
{

s t a r 2 . Se tAct ive (t rue) ; // i f score i s 500
or over , player ge ts 2 s t a r s

i f (score >= 1000)
{

s t a r 3 . Se tAct ive (t rue) ; // i f score
i s 1000 or over , player ge ts

3 s t a r s
}

}
}

FIGURE 4.25: Code that determines how many stars the player is
awarded

Three stars is intended to be a challenge - easier to achieve on easy levels, and
demanding on harder levels. This provides an appeal to players of varying experi-
ence - casual players can still feel a sense of accomplishment by winning 3 stars on
easier levels, with more experienced players looking to test their ability in achieving
3 stars on hard (and very hard) levels.

The returnToHub() functions identically to the implementation described in sec-
tion 4.4.2.

4.4.5 Level Overlay

The level overlay displays the score and lives on the screen during levels. These
variables (lives and distance) are defined as public static variables, held within Lev-
elPlayerController.cs, enabling LevelUIText.cs to access them. The variables need to
be accessed in order to convert to string for application to the overlay text elements
- raw float values cannot be used.

Chapter 4. Design and Implementation 39

l i v e s T e x t . t e x t = L e v e l P l a y e r C o n t r o l l e r . l i v e s . ToStr ing
() ;

d i s tanceText . t e x t = L e v e l P l a y e r C o n t r o l l e r . d i s t a n c e I n t
. ToStr ing () + "m" ;

FIGURE 4.26: Code that converts the lives and distance variables to
strings - compatible with UI

Three was chosen as the number of lives due to typical use in games - being a
fair number, not too high and not too low. Scoring (distance in meters) is updated
in real time - rather than, for example, having to collect something to boost score -
at an appropriate speed (equatable to speed of player) to allow the player to focus
purely on avoiding obstacles and gaining power-ups.

4.5 Graphics

The overarching graphical theme of the game was to be colourful and cartoon-ish.
I chose this theme as it’s inline with other successful games of the same genre, in
addition to appealing to a wider audience, and possible for me to create satisfactory
models for.

4.5.1 Environment

Models

Environment models followed the specified theme, and all had appropriately sized
box collider components added to them to prevent the player from walking through
them. An example model, with collider, can be seen below, in figure 4.27:

FIGURE 4.27: A fire hydrant with a collider component attached

Certain models, such as the dog and human models, and town and suburban
houses, had differing colours applied to them (and prefab variants made) within
Unity (rather than Blender) in order to provide aesthetic variation within the game.

Chapter 4. Design and Implementation 40

Hub

The hub environment spans the town, park, and suburb area. A terrain was used
to house the hub scene, allowing me to paint and raise various ground textures ap-
propriate to the environment. Raising the ground textures also proved beneficial in
closing off the map from the undeveloped areas of the game environment.

Models were placed appropriately (with scaled sizing) - with foliage placed on
grassy areas, and models such as fire hydrants placed on pathways. The town area
was designed around the intended experience for the player when first spawning
in - the spawn point being the town hall (serves as a noticeable landmark within
the hub). A green area was added just ahead, for not only aesthetic purposes (looks
nicer to see both built-up and foliage, rather than just build-up), but to serve as a
‘welcome area’ for the player, housing the bulletin board.

Particle systems were utilised to make attention-grabbing objects (fast moving,
gradient colours, woosh audio attached - invites the player to approach them), serv-
ing as the level indicators. Intuitive colour systems were added to them - green for
easy, orange for medium, red for hard. Additionally, manholes serve as entrances to
secret sewer levels as a result of playtesters expecting to be able to enter them (open
model).

Levels

Levels had set dressing applied to them as appropriate: town levels had townhouses
either side of the road, park levels had grass and trees, and suburb levels had sub-
urban houses. This can be seen below in figure 4.28:

FIGURE 4.28: Comparison views between the level set dressing

4.5.2 Characters

Models

Models created for the project were a dog model, and a base human model. The
human model was modified - by selecting faces and adjusting colour (for clothes
and hair) or size (for hair length, female AI skirts) - to produce male and female AI,
and the player variations.

The player’s appearance is unique, wearing blue shorts, a red top, socks, and
black shoes, rather than being the same as the male AI, in order to make the player
stand out within the game. Male AI wear long trousers, and female AI wear skirts
with pumps, as seen in figure 4.29 below:

Chapter 4. Design and Implementation 41

FIGURE 4.29: The three human models used in the project

Animation

Before animation could commence, models had to be prepared with rigging in order
to thus pose and animate them.

For animation, I referred to various human and canine cycle videos for idling,
walking, and running (for example, in figure 4.30), in order to attempt to create
realistic-looking animations.

FIGURE 4.30: An example of an animation cycle reference (YouTube,
2017)

Animator controllers (as seen in section 4.1.1, figure 4.3) were created and ap-
plied to dog and human AIs, the player, and trees (swaying in the breeze to provide
a more detailed environmental atmosphere).

The default animation for all is idle, with RunOn and WalkOn parameters chang-
ing to 1 when the AI or player move - and back to 0 (idle) when they stop moving.

4.6 Scrapped Features

Unfortunately, due to time constraints, some of the originally planned features that
were less integral to the project had to be scrapped.

Chapter 4. Design and Implementation 42

4.6.1 Saving

The save feature was designed to hold the players highest score at the end of each
level. This would have involved storing the first score value for each level to a vari-
able, and saving it using Unity’s PlayerPrefs function (Unity, 2019). Subsequent at-
tempts at the same level would have checked if the final score was more than the
saved value, and if so, overwriting it.

The scores would have been able to have been viewed on the bulletin board,
along with the corresponding star value. Justification for design of this feature
comes from encouraging replayability of the game, with the player being able to
see their high score and attempt to beat it by replaying the levels.

4.6.2 Reward System

A reward system in the game was a large feature planned to take the form of a hat
shop, where players could exchange stars earned from levels for cosmetic hats.

The shop would have either been simply an AI standing outside, or inside a
building - if the player walked to the door of the shop within the hub, and held
down space, they would be teleported to this area.

The shop interface would show pictures of each hat (e.g. crown, baseball cap,
jester hat), and their price. Prices would have either come from earning stars cumu-
latively - allowing players to earn all rewards from any level - or from having to earn
each star once from every level - encouraging the player to experience every level in
the game.

Once a hat is ‘bought’, the original player model would be set inactive, and the
corresponding hat model set active.

An example of a hat model I created can be seen below, in figure 4.31:

FIGURE 4.31: A model of the player wearing a baseball cap

Like the save feature, the reward system would have also boosted the games
replayability value - giving the player something to work forward to - as well as
providing the player with a feeling of achievement.

4.6.3 AI Responses

AI responses was a last-minute hopeful addition to the game, in order to add more
life and character to the AI in form of player-AI interaction. The AI were planned

Chapter 4. Design and Implementation 43

to say various statements in form of a speech bubble object (that is their child) ac-
tivating upon collision, such as ‘Hello’ on first collision, and ‘Go away’ on the 10th
collision.

44

Chapter 5

User Guide

5.1 Technical Specifications

The game runs on Windows and Mac operating systems.

1. Download the game folder

2. Extract files

3. Run ‘Walkies.exe’

4. Click play!

5.2 User Controls

FIGURE 5.1: Controls for Walkies (WPClipart, 2019)

Chapter 5. User Guide 45

5.3 Gameplay

5.3.1 Hub Gameplay

FIGURE 5.2: Accessing the bulletin board

FIGURE 5.3: How to access levels

Chapter 5. User Guide 46

FIGURE 5.4: How to get a dog companion

5.3.2 Level Gameplay

FIGURE 5.5: Level gameplay

Chapter 5. User Guide 47

5.4 Interface

5.4.1 Start Interface

FIGURE 5.6: Start menu

Chapter 5. User Guide 48

5.4.2 Pause Interface

FIGURE 5.7: Pause menus; hub on the left, levels on the right

5.4.3 Bulletin Interface

FIGURE 5.8: Bulletin board home interface

Chapter 5. User Guide 49

FIGURE 5.9: Bulletin board about interface

FIGURE 5.10: Bulletin board controls interface

Chapter 5. User Guide 50

5.4.4 Level Over Interface

FIGURE 5.11: Level over menu

51

Chapter 6

Testing

For testing, I carried out both white-box and black-box testing, guided by specifica-
tions set out in Chapter 3. The test cases don’t cover every specific feature in great
detail; generally these were tested along the development process by myself. In-
stead, these cases cover the general and most important objectives necessary to have
the project functioning.

White-box testing refers to being knowledgeable of the internal structure of the
software - and thus I carried this out.

Black-box testing is the opposite - with the internal structure unknown to the
user - and so playtesters carried this out for me, providing me with results.

These test cases are in addition to constant testing I performed throughout de-
velopment of the project. Methods I used to help with this constant testing included
colouring objects differently (to easily differentiate and thus see if they were work-
ing as intended), and printing statements in certain parts of the code to check if the
correct code was executed.

6.1 White-box Testing

TABLE 6.1: Test Case 1: Player Controls

Feature Player controls (movement etc.)
Action Input all of the player controls
Process Player is moved, or UI is toggled
Expected Output Player moves forward/backwards, pause toggles on/off,

view mode toggles on/off
Output Player moves forward/backwards, pause toggles on/off,

view mode toggles on/off
Result Pass

Chapter 6. Testing 52

TABLE 6.2: Test Case 2: Level Load (for all levels)

Feature Level loads from hub scene
Action Hold down space within radius of level indicator
Process Correct difficulty and level setting are passed as values
Expected Output Corresponding level loads (correct setting, and difficulty)
Output Corresponding level loads
Result Pass

TABLE 6.3: Test Case 3: Road Moving

Feature Road moves within levels
Action N/A
Process Road constantly moving, checks current position, teleports

when behind player to back
Expected Output Road moving in a believable way (player looks to be mov-

ing instead)
Output Road moving in a mostly believable way (player looks to

be moving instead) - slight visual gaps in between roads
Result Mostly pass

TABLE 6.4: Test Case 4: Spawn Collisions

Feature Obstacles and Power-ups collide with player
Action Run into obstacle/power-up
Process Object detect player, loses/gains a life dependent on name
Expected Output Player loses/gains a life, obstacle disappears
Output Player loses/gains a life, obstacle disappears
Result Pass

TABLE 6.5: Test Case 5: Dog Companion

Feature Gaining a dog companion in the hub scene
Action Hold down space whilst near a dog AI
Process Dog of same colour is set active
Expected Output Dog of same colour appears by player
Output Dog of same colour appeared
Result Pass

Chapter 6. Testing 53

6.2 Black-box Testing

TABLE 6.6: Test Case 1: Graphical Requirements

Feature Graphical aspects
Action Explore the game
Expected Results Consistent, pleasing theme, all models working, no com-

plaints
Results Consistent, pleasing theme, dog has see-through model,

some models could do with more variation
Result Mostly pass

TABLE 6.7: Test Case 2: Appropriate Balancing

Feature Overall balancing
Action Play the game, specifically levels
Expected Results Easy felt easy, hard felt challenging but achieveable with

effort
Results Easy felt easy, hard felt challenging but achieveable with

effort
Result Pass

TABLE 6.8: Test Case 3: Intuitive UI

Feature Interfaces
Action Interact with the various interfaces
Expected Output Easy to use, no external help needed with playing the game
Results Easy to use, no external help needed with playing the game
Result Pass

6.2.1 Conclusion

To briefly conclude this section, both the white and black-box testing suggests my
project is successful - although it’s not perfect as a few minor imperfections were
found, the vast majority of tests succeeded with a pass. These results imply the
project is both functional, and enjoyable as set out to be in my original aims.

54

Chapter 7

Evaluation

7.1 User Evaluation

7.1.1 User Feedback

I carried out a survey with a few select playtesters, in order to gain both qualitative
and quantitative feedback on my project. The full survey can be found in Appendix
C.

Half of the participants were of age 18-21, and half age 27+. 60% were male,
and 40% female - providing a good variation of users to gain feedback from. More
importantly, people of a wide variety of gaming background took the survey - im-
portant to gauge whether the game is accessible to everyone (as is typical of infinite
runner genres) and thus evaluate stakeholders.

FIGURE 7.1: Gaming experience of people who took the survey

Multiple players provided graphical feedback - to be expected, as I am new to
creating models and animations. This included the dog model being see-through,
and dog feet looking weird, the models looking too similar and basic etc. I’m not
concerned about this feedback particularly - these are all quite specific points, rather
than generally stating that the game doesn’t look good. This projects main focus

Chapter 7. Evaluation 55

is on technical specifications, rather than the graphical aspects. Despite this, I do
acknowledge graphics as a point of improvement for the game.

Various bugs were reported throughout development, as seen in figure 7.2 below.
Evaluating the game now as a finished product, I’d argue its success due to the fact
that the vast majority of bugs reported in earlier development gameplay have since
been fixed (detailed further in section 7.2).

FIGURE 7.2: Reported bugs within the game

Although game optimisation wasn’t a particular specific goal in making this
game, it is of course a good goal to meet. The majority of playtesters reported smooth
gameplay - although some reported lag, this is arguably due to playing the game on
older, or non-gaming computers, and thus isn’t necessarily inherently a problem
with the project itself.

The majority of playtesters also reported finding the controls/objectives of the
game to be clear - with a minority stating ’partly clear’. As player feedback was
implemented into the game after this survey was taken, it’s highly likely that the
same players who answered ’partly clear’ would now answer ’Yes - clear’ on the
final version.

Chapter 7. Evaluation 56

FIGURE 7.3: Were controls and objectives clear?

Respondents didn’t have much to say about the UI, expect for one player who
stated ’Good variety of colours, nice large images, overall looked good’ - impling
the UI design overall is a success.

In terms of balancing. feedback varied from player to player - hence why balanc-
ing is so difficult to get right. Some players stated they felt 3 stars was too much of
a challenge, some stated it was too easy. These point suggest I could further tweak
the balancing, although a different feature to fix these problems may be preferential
instead; such as generate the levels based on the players’ stated gaming experience.

The majority of players did not find the secret levels (which were implemented
as a result of player request for an easter egg, and stating that it appears you should
be able to go down the manholes), with only 20% finding them. This is good, as it
means the levels do what their name describes - be secret!

Other various comments made included a larger variety of audio tracks (repeti-
tive to listen to), and dialogue with the townspeople. I feel this feedback is great to
get, as it’s not commenting on the core gameplay aspects; thus I can only presume
that the core objectives have been met successfully.

7.1.2 Improvements

As a result of various feedback from multiple playtesters - both from the survey
results, and from conversational feedback - here are features I implemented into the
final project version:

• Added WASD for player movements (majority of players stated they prefer
WASD to arrow keys on the survey)

• Gave the player the ability to move backwards

• Added the Escape key to pause

• Gave the player the ability to gain a dog companion

• Added a killzone to prevent out-of-bounds access

Chapter 7. Evaluation 57

• Added more colliders to prevent out-of bounds access

• Provided more specific information on the bulletin UI (specified maximum of
5 lives, obstacles would lose/gain the player a life)

• Froze player coordinates to prevent unintended float across axis

• Expanded the object spawn area within levels to reach some safe spots

• Added secret levels in the sewers, accessible via manholes

This is quite a substantial list, and perfectly shows how valuable playtesting a
game is. While none of these changes or additions took particular skill to implement,
they have arguably positively impacted players’ experience of the game.

7.2 Specification Evaluation

7.2.1 Gameplay requirements

Enjoyable to play?

While this point is rather subjective, my experience watching playtesters try out the
game, and myself trying out the game, suggests this point has been met - I certainly
enjoyed myself attemping to gain 3 stars throughout the levels.

Ability to explore hub scene, with appropriate collisions and interactions?

The objective has been met, with a fully-working hub scene, containing interactions
for the level indicators, dog companions, and bulletin interface. All collisions work
as intended, with players being unable to clip through models.

Ability to access infinite runner levels from various points in the hub scene?

This objective has been met, with players able to access the infinite run levels from
various points within the hub.

Infinite runner levels with moving roads, randomly spawned obstacles or power-
ups, life system, and score system?

This objective has been met, with correctly functioning moving roads, spawned ob-
stacles and power-ups, life system, and scoring system.

Appropriate balancing - in terms of level difficulty, overall player control sensi-
tivity/speed, and AI action weighting?

Arguably, this objective is met. Whilst it’s hard to determine the accuracy of balanc-
ing, feedback and personal experience suggests balancing is at least fine, if not good.
At the very least, all balancing bar level difficulty has been successful.

Reward system - hat shop, ability to purchase hats for stars?

Unfortunately, this is the largest requirement that has not been met within the game-
play objectives, purely due to time constraints. Fortunately, this is not a core aspect -
the game can function without it, however it definitely would have been a valuable
feature to implement (in terms of boosting replay-value and awarding the player)

Chapter 7. Evaluation 58

7.2.2 AI requirements

Ability to perform a variety of actions: idling, walking, running,and flocking?

This objective has been met, with both the dog and human AI able to perform idling,
walking, running, and flocking behaviours.

Ability to perform actions in a weighted fashion?

This objective has been met, with both the dog and human AI able to perform their
actions in a weighted manner - the weighting makes sense in terms of providing
natural gameplay, as justified in Chapter 4.

Ability to gain a dog that follows the player upon interacting with the dog AI?

This objective has been met, and improved as a result of player feedback - specif-
ically stating that there should be a choice of colour available for the dog (which
has been implemented - brown, black, white, grey, and blonde dogs available). The
player can gain a dog companion by pressing spacebar when near a dog AI.

Ability to express discontent upon collision with the player?

This objective has not been met. Whilst unfortunate, this is the only objective within
the AI requirements that has not been met, and it not integral to the AI functioning.
However, as a player commented on the wish to be able to interact with the AI, this
suggests this objective is more desired than I originally thought.

7.2.3 UI requirements

Overall consistent, thematic, and stylistic design?

This objective has been met, with player feedback commenting positively on the
aesthetically pleasing UI design. All of the interfaces are consistent, with the same
colour schemes, buttons, sizing, and font used. The style matches with that of the
overall game.

Start menu - capable of starting or quitting the game?

This objective has been met, with the start menu capable of both starting and quitting
the game upon initially loading the application.

Pause menu - capable of pausing game from hub or levels, and quitting the game?

This objective has been met, with both the hub and level scenes able to pause the
game from any point - with no interference from other features (such as view mode,
or moving whilst the UI is open).

Bulletin menu - contains details about controls and gameplay to inform the player?

This objective has been met - partly as a result of implementing player feedback.
The bulletin contains relevant information on the games’ instructions, as well as the
controls.

Chapter 7. Evaluation 59

Level UI - capable of displaying updated lives and score

This objective has been met, with the level overlay UI displaying the current amount
of lives the player has, and their current distance score in meters.

7.2.4 Graphical requirements

Overall consistent, thematic, and stylistic design?

This objective has arguably been met, with all game models sharing the same colour
palette, sizing, and style. The textures, skybox, and overall game environment addi-
tionally follow this stylistic theme - colourful and cartoony.

Appropriate sizing and placement of models?

This objective has mostly been met, with the majority of models appropriately sized
and placed around the scenes. One minor point I would make, is that the subur-
ban house (possible townhouses too) might be slightly too big in comparison to the
player - the mailbox is taller than the player itself. However, they do blend in nicely
to their surroundings, and thus this scaling issue may be better off as a stylistic
choice.

Believable walk, run, and idle animation cycles?

This objective has also mostly been met, with a minor point about the dog walk
animation being the inconsistency with its feet. This is only a minor point, however,
with the rest of the walk, run and idle animations having a believable appearance.

7.3 Conclusion

In relation to the original proposal for this project, the results have suggested that
this project is a success - with players being capable of playing the game completely
(thus functionality requirements are met), and enjoying themselves - thus thus fun
factor has also been met. Additionally, the vast majority of specification require-
ments were met, implying the project has been successful - although not perfect.
There were a few objectives either partly met, or not met at all; this doesn’t mean the
project is a failure, as the core aspects were met, however they are definitely good
points for improvements to consider in any future development.

At the most basic level, my original aim of making a polished, 3D infinite runner-
style game have been met. Additionally I succeeded in meeting the goal of creating
the majority of the assets myself; having made all of the models used in game, and
animations.

60

Chapter 8

Conclusion

8.1 Overview

Primary objectives of this project consisted of creating a fun, consistently styled, in-
finite runner game. My project easily met all of these core objectives, and additional
ones. Unfortunately, some aims were not met - such as implementing a reward sys-
tem - however I do not believe this makes the project a failure due to the fact that
the missed aims were optional - the core objectives were met without them.

It is hard to compare it to games of the same genre, due to the fact that they have
been developed for different platforms (mobile), however, I feel as though my game
is certainly an original twist on this genre (due to having a hub world, and AI etc.),
and provides fun gameplay.

Overall, with gameplay, AI, UI, and graphical requirements mostly met, I would
personally consider my game to be successful. However, of course, it can be diffi-
cult to determine a more accurate rating without commercially releasing the game;
positive player feedback reaffirmed my opinion that this project is a success.

8.2 Future Work

Walkies has a vast number of possibilities available in relation to future develop-
ment. First and foremost, scrapped features as outlined in section 4.6 would take
priority when deciding on how to expand the game. To summarise, there are various
- some previously mentioned, some not - additions that could be added, including:

• Save feature - detailed in 4.6.1

• Reward system - detailed in 4.6.2

• AI responses - detailed in 4.6.3. Additionally, this opens up the door for dis-
cussion regarding further, and more advanced, AI interaction, such as having
conversations with selectable options and more.

• Environment atmospheric affects - this would include features like a day and
night cycle, weather, and seasons

• Graphical improvements - with no time constraints, this allows for the possi-
bility of re-making assets and animations to a higher quality

• More areas - the nature of the gameplay makes it very flexible in regards to
settings, and thus more areas around the map could be opened, with more
levels - such as a beach area, or forest area

Chapter 8. Conclusion 61

• Level tweaks - more power-ups and obstacles added (some unique to certain
levels), along with added effects for power-ups; such as a time-slower, score
boost, invincibility etc.

8.3 Final Comments

This project has helped broaden my knowledge significantly in terms of my under-
standing of game development, and especially my knowledge of Unity and Blender
- meeting objectives set out at the beginning of the project.

Ultimately, I am pleased with how the project turned out - I managed to meet
the vast majority of specifications, specifically the core aims necessary to have a
working game, and received positive user feedback, thus would consider this project
a success overall.

62

References

Report

Business Insider. 2019. ’Grand Theft Auto 5’ is still a best-selling game, over 5 years
later - Business Insider . [ONLINE] Available at: https://www.businessinsider.
com/grand-theft-auto-5-sales-2018-2019-1?r=US&IR=T. [Accessed 17 May 2019].

Eurogamer. 2014. The Last of Us review. [ONLINE] Available at: https://www.
eurogamer.net/articles/2014-07-28-the-last-of-us-review. [Accessed 17 May
2019].

GameSpot. 2017. Star Wars Battlefront 2’s Loot Box Controversy Explained -
GameSpot. [ONLINE] Available at:
https://www.gamespot.com/articles/star-wars-battlefront-2s-loot-box-controversy-expl/
1100-6455155/. [Accessed 17 May 2019].

Game Guides. 2019. Endings and branching of main quests - Fallout 4 Game
Guide & Walkthrough | gamepressure.com. [ONLINE] Available at: https://guides.
gamepressure.com/fallout4/guide.asp?ID=32694. [Accessed 17 May 2019].

Game Rant. 2016. No Man’s Sky Steam Reviews Plummet to ‘Overwhelm-
ingly Negative’ – Game Rant. [ONLINE] Available at: https://gamerant.com/
no-mans-sky-steam-reviews-overwhelmingly-negative/. [Accessed 17 May 2019].

IGN. 2007. Super Mario Galaxy Review - IGN. [ONLINE] Available at: https:
//uk.ign.com/articles/2007/11/08/super-mario-galaxy-review. [Accessed 17
May 2019].

Jagex. 2018. Mining and Smithing Beta - News - RuneScape. [ONLINE] Avail-
able at: https://secure.runescape.com/m=news/mining-and-smithing-beta?gsi=
bv2hhg. [Accessed 17 May 2019].

Kirk Hamilton. 2017. In-Game Purchases Poison The Well. [ONLINE] Available
at: https://kotaku.com/in-game-purchases-poison-the-well-1820844066. [Ac-
cessed 17 May 2019].

Metacritic. 2019. Fallout 76 for PC Reviews - Metacritic. [ONLINE] Available at:
https://www.metacritic.com/game/pc/fallout-76. [Accessed 17 May 2019].

Metacritic. 2019. Super Mario Galaxy for Wii Reviews - Metacritic. [ONLINE]
Available at: https://www.metacritic.com/game/wii/super-mario-galaxy. [Ac-
cessed 17 May 2019].

https://www.businessinsider.com/grand-theft-auto-5-sales-2018-2019-1?r=US&IR=T
https://www.businessinsider.com/grand-theft-auto-5-sales-2018-2019-1?r=US&IR=T
https://www.eurogamer.net/articles/2014-07-28-the-last-of-us-review
https://www.eurogamer.net/articles/2014-07-28-the-last-of-us-review
https://www.gamespot.com/articles/star-wars-battlefront-2s-loot-box-controversy-expl/1100-6455155/
https://www.gamespot.com/articles/star-wars-battlefront-2s-loot-box-controversy-expl/1100-6455155/
https://guides.gamepressure.com/fallout4/guide.asp?ID=32694
https://guides.gamepressure.com/fallout4/guide.asp?ID=32694
https://gamerant.com/no-mans-sky-steam-reviews-overwhelmingly-negative/
https://gamerant.com/no-mans-sky-steam-reviews-overwhelmingly-negative/
https://uk.ign.com/articles/2007/11/08/super-mario-galaxy-review
https://uk.ign.com/articles/2007/11/08/super-mario-galaxy-review
https://secure.runescape.com/m=news/mining-and-smithing-beta?gsi=bv2hhg
https://secure.runescape.com/m=news/mining-and-smithing-beta?gsi=bv2hhg
https://kotaku.com/in-game-purchases-poison-the-well-1820844066
https://www.metacritic.com/game/pc/fallout-76
https://www.metacritic.com/game/wii/super-mario-galaxy

Chapter 8. Bibliography 63

Patricia Hernandez. 2015. Why Five Nights at Freddy’s Is So Popular. [ONLINE]
Available at:
https://kotaku.com/why-five-nights-at-freddys-is-so-popular-explained-1684275687.
[Accessed 17 May 2019].

Pocket Gamer. 2015. I Am Bread’s controls may be too crumby for some. [ON-
LINE] Available at:
https://www.pocketgamer.com/articles/067324/i-am-breads-controls-may-be-too-crumby-for-some/.
[Accessed 17 May 2019].

RuneScape Wiki. 2019. Treasure Hunter - The RuneScape Wiki. [ONLINE] Avail-
able at: https://runescape.wiki/w/Treasure_Hunter#Controversies. [Accessed
17 May 2019].

Unity Technologies. 2019. Unity - Scripting API: PlayerPrefs. [ONLINE] Avail-
able at: https://docs.unity3d.com/ScriptReference/PlayerPrefs.html. [Accessed
17 May 2019].

Wikipedia. 2019. Imangi Studios - Wikipedia. [ONLINE] Available at: https:
//en.wikipedia.org/wiki/Imangi_Studios. [Accessed 17 May 2019].

Wikipedia. 2019. Kiloo - Wikipedia. [ONLINE] Available at: https://en.wikipedia.
org/wiki/Kiloo. [Accessed 17 May 2019].

Wikipedia. 2019. List of best-selling game consoles - Wikipedia. [ONLINE]
Available at: https://en.wikipedia.org/wiki/List_of_best-selling_game_consoles.
[Accessed 17 May 2019].

Wikipedia. 2019. List of best-selling video games - Wikipedia. [ONLINE] Avail-
able at: https://en.wikipedia.org/wiki/List_of_best-selling_video_games. [Ac-
cessed 17 May 2019].

Wikipedia. 2019. List of most-played mobile games by player count - Wikipedia.
[ONLINE] Available at: https://en.wikipedia.org/wiki/List_of_most-played_
mobile_games_by_player_count. [Accessed 17 May 2019].

Figures

Ars Technica. 2014. Ubisoft working to fix game-breaking Assassin’s Creed: Unity
bugs | Ars Technica. [ONLINE] Available at: https://arstechnica.com/gaming/
2014/11/ubisoft-working-to-fix-game-breaking-assassins-creed-unity-bugs/.
[Accessed 17 May 2019].

COMPUTER / KEYBOARD KEYS - Public Domain clip art at WPClipart (image
thumbnails page). [ONLINE] Available at: https://www.wpclipart.com/computer/
keyboard_keys/. [Accessed 17 May 2019].

Goomba Stomp. 2016. Hall of Fame #11: ’Super Mario Galaxy’ | Goomba Stomp.
[ONLINE] Available at: https://www.goombastomp.com/hall-fame-super-mario-galaxy/.
[Accessed 17 May 2019].

https://kotaku.com/why-five-nights-at-freddys-is-so-popular-explained-1684275687
https://www.pocketgamer.com/articles/067324/i-am-breads-controls-may-be-too-crumby-for-some/
https://runescape.wiki/w/Treasure_Hunter#Controversies
https://docs.unity3d.com/ScriptReference/PlayerPrefs.html
https://en.wikipedia.org/wiki/Imangi_Studios
https://en.wikipedia.org/wiki/Imangi_Studios
https://en.wikipedia.org/wiki/Kiloo
https://en.wikipedia.org/wiki/Kiloo
https://en.wikipedia.org/wiki/List_of_best-selling_game_consoles
https://en.wikipedia.org/wiki/List_of_best-selling_video_games
https://en.wikipedia.org/wiki/List_of_most-played_mobile_games_by_player_count
https://en.wikipedia.org/wiki/List_of_most-played_mobile_games_by_player_count
https://arstechnica.com/gaming/2014/11/ubisoft-working-to-fix-game-breaking-assassins-creed-unity-bugs/
https://arstechnica.com/gaming/2014/11/ubisoft-working-to-fix-game-breaking-assassins-creed-unity-bugs/
https://www.wpclipart.com/computer/keyboard_keys/
https://www.wpclipart.com/computer/keyboard_keys/
https://www.goombastomp.com/hall-fame-super-mario-galaxy/

Chapter 8. Bibliography 64

YouTube. 2014. Candy Crush Saga Android Gameplay #14 - YouTube. [ONLINE]
Available at: https://www.youtube.com/watch?v=d5Rf0An-jEg. [Accessed 17 May
2019].

YouTube. 2018. DETROIT : BECOME HUMAN - MOCAP - MAKING OF - BE-
HIND THE SCENE - YouTube. [ONLINE] Available at: https://www.youtube.com/
watch?v=6TWHK18_ypA. [Accessed 17 May 2019].

YouTube. 2017. Dog WalkCycle and RunCycle Reference - YouTube. [ONLINE]
Available at: https://www.youtube.com/watch?v=8qV5pdO_X8U. [Accessed 17 May
2019].

YouTube. 2016. Goat Simulator ragdoll funny - YouTube. [ONLINE] Available
at: https://www.youtube.com/watch?v=CPlRaZNtZ3k. [Accessed 17 May 2019].

Project Assets

Audio

Freesound. (2019). Background Music Treatment by carpuzi. [ONLINE] Available
at: https://freesound.org/people/carpuzi/sounds/382327/ [Accessed 17 May 2019].

Freesound. 2019. Concrete Footstep 1.wav by morganpurkis. [ONLINE] Avail-
able at: https://freesound.org/people/morganpurkis/sounds/384635/. [Accessed
17 May 2019].

Freesound. 2019. concrete footstep 1 by Yoyodaman234. [ONLINE] Available
at: https://freesound.org/people/Yoyodaman234/sounds/166509/. [Accessed 17
May 2019].

Freesound. 2019. Dog bark 1 by jorickhoofd. [ONLINE] Available at: https:
//freesound.org/people/jorickhoofd/sounds/160092/. [Accessed 17 May 2019].

Freesound. 2019. Game background Music loop short by yummie. [ONLINE]
Available at: https://freesound.org/people/yummie/sounds/410574/. [Accessed
17 May 2019].

Freesound. 2019. Game Start by plasterbrain. [ONLINE] Available at: https://
freesound.org/people/plasterbrain/sounds/243020/. [Accessed 17 May 2019].

Freesound. 2019. game teleport by Leszek_Szary. [ONLINE] Available at: https:
//freesound.org/people/Leszek_Szary/sounds/133279/. [Accessed 17 May 2019].

Freesound. 2019. Lose_C_07 by cabled_mess. [ONLINE] Available at: https:
//freesound.org/people/cabled_mess/sounds/350983/. [Accessed 17 May 2019].

Freesound. 2019. Video Game Coin by harrietniamh. [ONLINE] Available at:
https://freesound.org/people/harrietniamh/sounds/415083/. [Accessed 17 May
2019].

https://www.youtube.com/watch?v=d5Rf0An-jEg
https://www.youtube.com/watch?v=6TWHK18_ypA
https://www.youtube.com/watch?v=6TWHK18_ypA
https://www.youtube.com/watch?v=8qV5pdO_X8U
https://www.youtube.com/watch?v=CPlRaZNtZ3k
https://freesound.org/people/carpuzi/sounds/382327/
https://freesound.org/people/morganpurkis/sounds/384635/
https://freesound.org/people/Yoyodaman234/sounds/166509/
https://freesound.org/people/jorickhoofd/sounds/160092/
https://freesound.org/people/jorickhoofd/sounds/160092/
https://freesound.org/people/yummie/sounds/410574/
https://freesound.org/people/plasterbrain/sounds/243020/
https://freesound.org/people/plasterbrain/sounds/243020/
https://freesound.org/people/Leszek_Szary/sounds/133279/
https://freesound.org/people/Leszek_Szary/sounds/133279/
https://freesound.org/people/cabled_mess/sounds/350983/
https://freesound.org/people/cabled_mess/sounds/350983/
https://freesound.org/people/harrietniamh/sounds/415083/

Chapter 8. Bibliography 65

Freesound. 2019. Woof.mp3 by Princess6537. [ONLINE] Available at: https://
freesound.org/people/Princess6537/sounds/144885/. [Accessed 17 May 2019].

Freesound. 2019. Woosh Noise 1.wav by potentjello. [ONLINE] Available at:
https://freesound.org/people/potentjello/sounds/194081/. [Accessed 17 May
2019].

Textures

Unity Asset Store. 2019. 15 Original Bricks Textures - Asset Store. [ONLINE]
Available at: https://assetstore.unity.com/packages/2d/textures-materials/
brick/15-original-bricks-textures-72427. [Accessed 17 May 2019].

Unity Asset Store. 2019. Fantasy landscape - Asset Store. [ONLINE] Available at:
https://assetstore.unity.com/packages/3d/environments/fantasy-landscape-103573.
[Accessed 17 May 2019].

Unity Asset Store. 2019. Five Seamless Tileable Ground Textures - Asset Store.
[ONLINE] Available at: https://assetstore.unity.com/packages/2d/textures-materials/
floors/five-seamless-tileable-ground-textures-57060. [Accessed 17 May 2019].

Unity Asset Store. 2019. Grass Road Race - Asset Store. [ONLINE] Available at:
https://assetstore.unity.com/packages/3d/environments/roadways/grass-road-race-46974.
[Accessed 17 May 2019].

Other

GitHub. 2019. GitHub - Unity-Technologies/NavMeshComponents: High Level
API Components for Runtime NavMesh Building. [ONLINE] Available at: https:
//github.com/Unity-Technologies/NavMeshComponents. [Accessed 17 May 2019].

Learn Everything Fast. YouTube. 2017. Rotate Camera with Mouse in Unity 3D -
YouTube. [ONLINE] Available at: https://www.youtube.com/watch?v=lYIRm4QEqro.
[Accessed 17 May 2019].

https://freesound.org/people/Princess6537/sounds/144885/
https://freesound.org/people/Princess6537/sounds/144885/
https://freesound.org/people/potentjello/sounds/194081/
https://assetstore.unity.com/packages/2d/textures-materials/brick/15-original-bricks-textures-72427
https://assetstore.unity.com/packages/2d/textures-materials/brick/15-original-bricks-textures-72427
https://assetstore.unity.com/packages/3d/environments/fantasy-landscape-103573
https://assetstore.unity.com/packages/2d/textures-materials/floors/five-seamless-tileable-ground-textures-57060
https://assetstore.unity.com/packages/2d/textures-materials/floors/five-seamless-tileable-ground-textures-57060
https://assetstore.unity.com/packages/3d/environments/roadways/grass-road-race-46974
https://github.com/Unity-Technologies/NavMeshComponents
https://github.com/Unity-Technologies/NavMeshComponents
https://www.youtube.com/watch?v=lYIRm4QEqro

66

Appendix A

Walkies Code

Note that the following scripts have the automatically-generated Unity package
code omitted from them:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

A.1 AIBehaviour.cs

using UnityEngine . AI ;

publ ic c l a s s AIBehaviour : MonoBehaviour
{

/∗
The AIBehaviour s c r i p t i s at tached to a l l of the human

AIs in the hub scene , and i s r e s p o n s i b l e f o r a l l of
t h e i r behaviour ; id l ing , walking , running , and
f l o c k i n g .

∗/

GameObject [] humans ;
Animator move ;
i n t coll isionAmount = 0 ;
NavMeshAgent nav ;
f l o a t a c t i o n ;
f l o a t speed ;
f l o a t timer , timer1 , rand ;
i n t respawnCount ;
Vector3 d e s t i n a t i o n ; // d e s t i n a t i o n v a r i a b l e holds the AI ’

s current d e s t i n a t i o n

// S t a r t i s c a l l e d before the f i r s t frame update
void S t a r t ()
{

humans = GameObject . FindGameObjectsWithTag (" human ") ;
//f i n d s a l l of the human AI c u r r e n t l y in the scene

move = gameObject . GetComponentInChildren<Animator > () ;
nav = GetComponent<NavMeshAgent > () ; //f ind the

NavMeshAgent component to r e f e r to

Appendix A. Walkies Code 67

respawnCount = 0 ; //AI s t a r t s o f f with no respawns ,
v a r i a b l e i s used to ensure they can only respawn
once

}

// Update i s c a l l e d once per frame
void Update ()
{

speed = nav . v e l o c i t y . magnitude ; //speed v a r i a b l e ge ts
the AI ’ s current speed

i f (gameObject . transform . p o s i t i o n . y > 0 . 8 f &&
respawnCount == 0) // i f the AI has spawned on top
of something (i . e . where i t shouldn ’ t be) ,
t e l e p o r t i t to new coordinates by c a l l i n g the
respawn funct ion

{
respawn () ;

}

i f (speed > 0 . 0 f && speed <= 1 . 7 f) // i f the speed i s
more than 0 , but not too f a s t (l e s s than 1 . 7) , s e t

AI animation to walk
{

move . S e t I n t e g e r (" WalkOn " , 1) ;
}
e l s e i f (speed >= 1 . 7 f) // i f the speed i s more than

1 . 7 , s e t AI animation to run
{

move . S e t I n t e g e r (" WalkOn " , 0) ;
move . S e t I n t e g e r (" RunOn" , 1) ;

}
e l s e // i f the speed i s none of the above (thus 0 or

l e s s) , s e t AI animation to i d l e
{

move . S e t I n t e g e r (" WalkOn " , 0) ;
move . S e t I n t e g e r (" RunOn" , 0) ;

}

i f (Vector3 . Distance (d e s t i n a t i o n , t h i s . transform .
p o s i t i o n) < 3 f) // i f the AI i s very near i t s
d e s t i n a t i o n f o r too long (i n d i c a t i n g i t ’ s poss ib ly

stuck) , i t s path gets r e s e t and i t r o l l s a new
a c t i o n

{
t imer1 += Time . deltaTime ;
i f (t imer1 > 15 f)
{

nav . ResetPath () ;
chooseAction () ;

Appendix A. Walkies Code 68

timer1 = 0 f ; { AI
}

}

t imer += Time . deltaTime ;
rand = Random . Range (3 f , 25 f) ;
i f (rand <= timer && speed == 0 . 0 f) //every few

seconds , i f the AI isn ’ t moving , r o l l a new a c t i o n
f o r the AI to perform

{
timer = 0 f ;
chooseAction () ;

}
}

void respawn () //respawn funct ion moves the AI to a new
random p o s i t i o n within the hub

{
respawnCount += 1 ;
f l o a t spawnX = Random . Range(−28 f , −10 f) ;
f l o a t spawnZ = Random . Range(−6f , 72 f) ;
t h i s . transform . p o s i t i o n = new Vector3 (spawnX , 0 . 3 f ,

spawnZ) ;
}

void chooseAction () //chooseAction funct ion c a l l s one of
the 4 a c t i o n f u n c t i o n s ; weighted d i f f e r e n t l y so not
completely random .

{
a c t i o n = Random . Range (0 f , 100 f) ; //generates random

number to c a l l corresponding a c t i o n
i f (a c t i o n >= 0 f && a c t i o n <= 60 f) //60% chance of

i d l i n g
{

i d l e () ;
}
e l s e i f (a c t i o n >= 60 f && a c t i o n <= 75 f) //15% chance

of walking
{

walk () ;
}
e l s e i f (a c t i o n >= 75 f && a c t i o n <= 80 f) //5% chance

of running
{

run () ;
}
e l s e i f (a c t i o n >= 80 f) //20% chance of f l o c k i n g
{

f l o c k () ;
}
e l s e

Appendix A. Walkies Code 69

{
i d l e () ;

}
}

void i d l e () //empty funct ion to do nothing , i d l e the AI
{
}

void walk () //walk funct ion chooses a random coordinat ion
within the hub , s e t s the AI d e s t i n a t i o n to said

coordinate − AI walks
{

nav . speed = 1 ; // s e t s AI speed to walking speed
Vector3 walkDest inat ion ;
f l o a t destX = Random . Range(−28 f , −10 f) ;
f l o a t destZ = Random . Range(−6f , 72 f) ;
walkDest inat ion = new Vector3 (destX , 0 . 3 f , destZ) ;
d e s t i n a t i o n = walkDest inat ion ;
nav . S e t D e s t i n a t i o n (walkDest inat ion) ; // S e t D e s t i n a t i o n

funct ion i s a b u i l t in Unity funct ion t h a t uses
NavMesh pathf inding to move the AI agent to the
s p e c i f i e d d e s t i n a t i o n

}

void run () //run funct ion chooses a random coordinat ion
within the hub , s e t s the AI d e s t i n a t i o n to said
coordinate − AI runs

{
nav . speed = 2 . 5 f ; // s e t s AI speed to running speed
Vector3 runDest inat ion ;
f l o a t destX = Random . Range(−28 f , −10 f) ;
f l o a t destZ = Random . Range(−6f , 72 f) ;
runDest inat ion = new Vector3 (destX , 0 . 3 f , destZ) ;
d e s t i n a t i o n = runDest inat ion ;
nav . S e t D e s t i n a t i o n (runDest inat ion) ;

}

void f l o c k () // f l o c k funct ion d i r e c t s the AI to the
n e a r e s t human , encouraging f l o c k i n g behaviour

{
nav . speed = 1 f ; // s e t s AI speed to walking speed
f l o a t d i s t a n c e ;
f l o a t [] d i s t a n c e s ;
f l o a t [] minMax ;
f l o a t lowest ;
i n t higher = 2 ;
GameObject t a r g e t ;
Vector3 f l o c k D e s t i n a t i o n = t h i s . transform . p o s i t i o n ;

// i n i t i a l i s a t i o n value
d i s t a n c e s = new f l o a t [humans . Length] ;

Appendix A. Walkies Code 70

minMax = new f l o a t [humans . Length] ;

f o r (i n t i = 0 ; i < humans . Length ; i ++) // f o r loop to
make array of d i s t a n c e s from current human to a l l
other humans

{
d i s t a n c e = Vector3 . Distance (humans [i] . transform .

pos i t ion , t h i s . transform . p o s i t i o n) ;
d i s t a n c e s [i] = d i s t a n c e ;

}

minMax = d i s t a n c e s ; //d up l i c a t e array f o r s torage of
sor ted values

f o r (i n t k = 0 ; k < minMax . Length−1; k++) //bubble
s o r t through d i s t a n c e s array , s o r t i n g from lowest
to highes t and s t o r i n g in separa te array (minMax)

{
f o r (i n t l = 0 ; l < minMax . Length−1; l ++)
{

i f (minMax[l] > minMax[l +1])
{

f l o a t temp = minMax[l + 1] ;
minMax[l +1] = minMax[l] ;
minMax[l] = temp ;

}
}

}

lowest = minMax [1] ; //array inc ludes the person t h i s
s c r i p t i s applied to ; thus the n e a r e s t person i s
the second value in the array (minMax [0] being 0)

while (lowest < 5 f && higher > 10) // i f the n e a r e s t
person i s too near (within 10 f d i s t a n c e) , carry on

i n c r e a s i n g chosen t a r g e t u n t i l they ’ re not within
10 f

{
lowest = minMax[higher] ;
higher += 1 ;

}

i f (lowest < 5 f) // i f there are no people f u r t h e r
than 10 f away , break out of funct ion (and thus don
’ t f l o c k)

{
re turn ;

}

Appendix A. Walkies Code 71

f o r (i n t i = 0 ; i < d i s t a n c e s . Length ; i ++) // f o r loop
f i n d s the human the lowest d i s t a n c e value

corresponds to (as determined above) ; s e t s
d e s t i n a t i o n to t h e i r p o s i t i o n

{
i f (lowest == d i s t a n c e s [i])
{

t a r g e t = humans [i] ;
f l o c k D e s t i n a t i o n = humans [i] . transform .

p o s i t i o n ;
}

}

d e s t i n a t i o n = f l o c k D e s t i n a t i o n ;
nav . S e t D e s t i n a t i o n (f l o c k D e s t i n a t i o n) ; // s e t s human’ s

d e s t i n a t i o n to t h e i r t a r g e t
}

//The fol lowing funct ion i s commented out as i t was used
when I was t e s t i n g around with the idea of the AI
doing something when the player c o l l i d e d with them ,
such as saying i n c r e a s i n g l y offended comments
dependent on how much the player had c o l l i d e d with
them .

/∗void OnColl is ionStay (C o l l i s i o n c o l l i d e r)
{

i f (c o l l i d e r . gameObject . name == " Player ")
{

coll isionAmount += 1 ;
i f (coll is ionAmount >= 1 && coll isionAmount <=

10)
{

p r i n t (" Nice to meet you ! ") ;
}
e l s e i f (coll isionAmount >= 10 && coll isionAmount

<= 20)
{

p r i n t (" Hello ! ") ;
}
e l s e i f (coll isionAmount >= 20 && coll isionAmount

<= 30)
{

p r i n t ("How rude . ") ;
}
e l s e i f (coll isionAmount >= 30 && coll isionAmount

<= 50)
{

p r i n t (" Stop pushing me . ") ;
}
e l s e i f (coll isionAmount >= 50)

Appendix A. Walkies Code 72

{
p r i n t (" Go away ! ") ;

}
}

}
∗/

}

A.2 AIDogBehaviour.cs

using UnityEngine . AI ;

publ ic c l a s s AIDogBehaviour : MonoBehaviour
{

/∗
The major i ty of t h i s s c r i p t i s dupl icated from

AIBehaviour (with the except ion of the OnColl is ionStay
funct ion found at the end of the s c r i p t) ; and thus

the comments can be found on the AIBehaviour s c r i p t
ins tead of here

The AIDogBehaviour s c r i p t i s at tached to a l l of the dog
AIs in the hub scene , and i s r e s p o n s i b l e f o r a l l of
t h e i r behaviour ; id l ing , walking , running , f lock ing ,
and informing the P l a y e r C o n t r o l l e r s c r i p t when to get
a dog accompaniment .

∗/

GameObject [] dogs ;
Animator move ;
i n t coll isionAmount = 0 ;
NavMeshAgent nav ;
f l o a t a c t i o n ;
f l o a t speed ;
f l o a t timer , timer1 , rand ;
GameObject player ;
i n t respawnCount ;
Vector3 d e s t i n a t i o n ;

// S t a r t i s c a l l e d before the f i r s t frame update
void S t a r t ()
{

dogs = GameObject . FindGameObjectsWithTag (" dog ") ;
move = gameObject . GetComponentInChildren<Animator > () ;
nav = GetComponent<NavMeshAgent > () ;
player = GameObject . Find (" Player ") ;

respawnCount = 0 ;
}

// Update i s c a l l e d once per frame

Appendix A. Walkies Code 73

void Update ()
{

speed = nav . v e l o c i t y . magnitude ;

i f (gameObject . transform . p o s i t i o n . y > 0 . 8 f &&
respawnCount == 0)

{
respawn () ;

}

i f (speed > 0 . 1 f && speed <= 1 . 7 f)
{

move . S e t I n t e g e r (" WalkOn " , 1) ;
}
e l s e i f (speed >= 1 . 7 f)
{

move . S e t I n t e g e r (" WalkOn " , 0) ;
move . S e t I n t e g e r (" RunOn" , 1) ;

}
e l s e
{

move . S e t I n t e g e r (" WalkOn " , 0) ;
move . S e t I n t e g e r (" RunOn" , 0) ;

}

i f (Vector3 . Distance (d e s t i n a t i o n , t h i s . transform .
p o s i t i o n) < 3 f)

{
t imer1 += Time . deltaTime ;
i f (t imer1 > 15 f)
{

nav . ResetPath () ;
chooseAction () ;
t imer1 = 0 f ;

}
}

t imer += Time . deltaTime ;
rand = Random . Range (3 f , 25 f) ;
i f (rand <= timer && speed == 0 . 0 f)
{

t imer = 0 f ;
chooseAction () ;

}
}

void respawn ()
{

respawnCount += 1 ;
f l o a t spawnX = Random . Range(−28 f , −10 f) ;
f l o a t spawnZ = Random . Range(−6f , 72 f) ;

Appendix A. Walkies Code 74

t h i s . transform . p o s i t i o n = new Vector3 (spawnX , 0 . 2 5 f ,
spawnZ) ;

}

void chooseAction ()
{

a c t i o n = Random . Range (0 f , 100 f) ;
i f (a c t i o n >= 0 f && a c t i o n <= 50 f)
{

i d l e () ;
}
e l s e i f (a c t i o n >= 50 f && a c t i o n <= 65 f)
{

walk () ;
}
e l s e i f (a c t i o n >= 65 f && a c t i o n <= 70 f)
{

run () ;
}
e l s e i f (a c t i o n >= 70 f) //dogs have a higher chance

of f l o c k i n g than humans (30%)
{

f l o c k () ;
}
e l s e
{

i d l e () ;
}

}

void i d l e ()
{
}

void walk ()
{

nav . speed = 1 ;
Vector3 walkDest inat ion ;
f l o a t destX = Random . Range(−28 f , −10 f) ;
f l o a t destZ = Random . Range(−6f , 72 f) ;
walkDest inat ion = new Vector3 (destX , 0 . 3 f , destZ) ;
d e s t i n a t i o n = walkDest inat ion ;
nav . S e t D e s t i n a t i o n (walkDest inat ion) ;

}

void run ()
{

nav . speed = 2 . 5 f ;
Vector3 runDest inat ion ;
f l o a t destX = Random . Range(−28 f , −10 f) ;
f l o a t destZ = Random . Range(−6f , 72 f) ;

Appendix A. Walkies Code 75

runDest inat ion = new Vector3 (destX , 0 . 3 f , destZ) ;
d e s t i n a t i o n = runDest inat ion ;
nav . S e t D e s t i n a t i o n (runDest inat ion) ;

}

void f l o c k ()
{

nav . speed = 1 ;
f l o a t d i s t a n c e ;
f l o a t [] d i s t a n c e s ;
f l o a t [] minMax ;
f l o a t lowest ;
i n t higher = 2 ;
GameObject t a r g e t ;
Vector3 f l o c k D e s t i n a t i o n = t h i s . transform . p o s i t i o n ;
d i s t a n c e s = new f l o a t [dogs . Length] ;
minMax = new f l o a t [dogs . Length] ;

f o r (i n t i = 0 ; i < dogs . Length ; i ++)
{

d i s t a n c e = Vector3 . Distance (dogs [i] . transform .
pos i t ion , t h i s . transform . p o s i t i o n) ;

d i s t a n c e s [i] = d i s t a n c e ;
}

minMax = d i s t a n c e s ;

f o r (i n t k = 0 ; k < minMax . Length − 1 ; k++)
{

f o r (i n t l = 0 ; l < minMax . Length − 1 ; l ++)
{

i f (minMax[l] > minMax[l + 1])
{

f l o a t temp = minMax[l + 1] ;
minMax[l + 1] = minMax[l] ;
minMax[l] = temp ;

}
}

}

lowest = minMax [1] ;

while (lowest < 5 f && higher > 10)
{

lowest = minMax[higher] ;
higher += 1 ;

}

i f (lowest < 5 f)
{

re turn ;

Appendix A. Walkies Code 76

}

f o r (i n t i = 0 ; i < d i s t a n c e s . Length ; i ++)
{

i f (lowest == d i s t a n c e s [i])
{

t a r g e t = dogs [i] ;
f l o c k D e s t i n a t i o n = dogs [i] . transform . p o s i t i o n

;
}

}

d e s t i n a t i o n = f l o c k D e s t i n a t i o n ;
nav . S e t D e s t i n a t i o n (f l o c k D e s t i n a t i o n) ;

}

void OnColl is ionStay (C o l l i s i o n c o l l i d e r) //
OnColl is ionStay i s a Unity funct ion t h a t takes the
information of any c o l l i s i o n and s t o r e s i t in the
c o l l i d e r v a r i a b l e

{
i f (c o l l i d e r . gameObject . name == " Player ") // i f the AI

i s c o l l i d i n g with the player , and space i s held
down, send information on the dog type to the
P l a y e r C o n t r o l l e r s c r i p t to a c t i v a t e a twin dog
game o b j e c t to accompany the player (e . g . i f space

i s held down by a grey dog , the player w i l l be
accompanied by a grey dog game o b j e c t)

{
i f (Input . GetKeyDown (KeyCode . Space) &&

P l a y e r C o n t r o l l e r . hasDog == f a l s e)
{

P l a y e r C o n t r o l l e r . hasDog = true ; //bool
v a r i a b l e prevents the player from having
mult ip le dog accompaniments

switch (t h i s . name)
{

case "Dog(Clone) " :
P l a y e r C o n t r o l l e r . dogType = 1 ;
break ;

case "Dog (black) (Clone) " :
P l a y e r C o n t r o l l e r . dogType = 2 ;
break ;

case "Dog (blonde) (Clone) " :
P l a y e r C o n t r o l l e r . dogType = 3 ;
break ;

case "Dog (grey) (Clone) " :
P l a y e r C o n t r o l l e r . dogType = 4 ;
break ;

case "Dog (white) (Clone) " :
P l a y e r C o n t r o l l e r . dogType = 5 ;

Appendix A. Walkies Code 77

break ;
}

}
}

}
}

A.3 AISpawn.cs

publ ic c l a s s AISpawn : MonoBehaviour
{

/∗
The AISpawn s c r i p t i s at tached to the t e r r a i n game

o b j e c t in the hub scene , and i s r e s p o n s i b l e f o r
spawning a l l of the AI randomly across the town ; both

dogs and humans .
∗/

[S e r i a l i z e F i e l d]
GameObject male1 , male2 , male3 , female1 , female2 , female3

, dogBrown , dogBlack , dogBlonde , dogGrey , dogWhite ; //
s e r i a l i z e d v a r i a b l e s to hold the AI prefabs

GameObject [] dogs ;
GameObject [] humans ;

i n t humanI , dogI , spawnCount ;
f l o a t spawnX , spawnZ , spawnQ ;

// S t a r t i s c a l l e d before the f i r s t frame update
void S t a r t ()
{

dogs = new GameObject [5] ; //dogs array holds a l l of
the dog AI game o b j e c t prefabs

dogs [0] = dogBrown ;
dogs [1] = dogBlack ;
dogs [2] = dogBlonde ;
dogs [3] = dogGrey ;
dogs [4] = dogWhite ;

humans = new GameObject [6] ; //humans array holds a l l
of the human (male & female) AI game o b j e c t
prefabs

humans [0] = male1 ;
humans [1] = male2 ;
humans [2] = male3 ;
humans [3] = female1 ;
humans [4] = female2 ;
humans [5] = female3 ;

Appendix A. Walkies Code 78

spawnCount = Random . Range (1 5 , 25) ; //generates random
number to determine how many dogs and humans to

spawn

f o r (i n t i = 0 ; i < spawnCount ; i ++)
{

spawnX = Random . Range(−28 f , −10 f) ; //generates
random x coordinate f o r current AI to spawn at

spawnZ = Random . Range(−6f , 72 f) ; //generates
random z coordinate f o r current AI to spawn at

spawnQ = Random . Range (0 f , 360 f) ; //generates
random number f o r the current AI ’ s angle to
spawn as

humanI = Random . Range (0 , 6) ; //generates random
number to pick a random AI prefab from the
humans array

I n s t a n t i a t e (humans [humanI] , new Vector3 (spawnX ,
0 . 3 f , spawnZ) , Quaternion . Euler (0 f , spawnQ , 0 f
)) ; //spawns a random AI at a random point
within the hub with the previously determined
v a r i a b l e s

spawnX = Random . Range(−28 f , −10 f) ; //fol lowing
code i s dupl icated from the human spawns ,
except using the array of dog prefabs . new
numbers get generated so the dogs don ’ t spawn
in the same coordinates as the humans

spawnZ = Random . Range(−6f , 72 f) ;
spawnQ = Random . Range (0 f , 360 f) ;
dogI = Random . Range (0 , 5) ;
I n s t a n t i a t e (dogs [dogI] , new Vector3 (spawnX , 0 . 2 5 f

, spawnZ) , Quaternion . Euler (0 f , spawnQ , 0 f)) ;
}

}

// Update i s c a l l e d once per frame
void Update ()
{

}
}

A.4 BulletinUI.cs

publ ic c l a s s B u l l e t i n U I : MonoBehaviour
{

/∗

Appendix A. Walkies Code 79

The B u l l e t i n U I s c r i p t i s at tached to the b u l l e t i n UI in
the hub scene . I t i s r e s p o n s i b l e f o r determining when

to load the b u l l e t i n UI , dependent on whether the
player i s within radius of the b u l l e t i n load
p a r t i c l e s , and holds down space or not . I t i s a l s o
r e s p o n s i b l e f o r loading/unloading s p e c i f i c UIs within

the b u l l e t i n UI ; button c o n t r o l s .
∗/

publ ic s t a t i c bool i s B u l l e t i n O n = f a l s e ; //publ ic s t a t i c
v a r i a b l e holds s t a t e of b u l l e t i n f o r r e f e r e n c e

[S e r i a l i z e F i e l d]
GameObject bul le t inUI , introduct ionUI , contro lsUI ; //

s e r i a l i z e d v a r i a b l e s to hold the various UI ’ s used f o r
the b u l l e t i n UI

P l a y e r C o n t r o l l e r viewMode ;
GameObject player ;
GameObject p a r t i c l e s ;
f l o a t radius ;
f l o a t keyHoldTime = 0 . 0 f ;

// S t a r t i s c a l l e d before the f i r s t frame update
void S t a r t ()
{

viewMode = GameObject . Find (" Player ") . GetComponent<
PlayerContro l l e r > () ; //view mode r e f e r e n c e to only

allow the b u l l e t i n to load i f not in view mode
player = GameObject . Find (" Player ") ;
p a r t i c l e s = GameObject . Find (" B u l l e t i n p a r t i c l e s ") ;
radius = p a r t i c l e s . GetComponent<Part ic leSystem > () .

shape . radius ; // p a r t i c l e radius s tored f o r use to
know when the b u l l e t i n should be loaded (when
space i s held down in the p a r t i c l e s in f r o n t of
the b u l l e t i n)

}

// Update i s c a l l e d once per frame
void Update ()
{

f l o a t d i s t a n c e = Vector3 . Distance (p a r t i c l e s . transform
. pos i t ion , player . transform . p o s i t i o n) ; // v a r i a b l e

c o n s t a n t l y updating to check d i s t a n c e betwen the
b u l l e t i n load p a r t i c l e s and the player

i f (d i s t a n c e <= radius) // i f the player i s within the
radius of the b u l l e t i n load p a r t i c l e , player i s

not in view mode , game i s not paused , and space i s
held down f o r a few seconds , load the b u l l e t i n AI
and pause time

Appendix A. Walkies Code 80

{
i f (Input . GetKey (KeyCode . Space)) //counts time

the space key i s being held f o r
{

keyHoldTime += Time . deltaTime ;
}

i f (Input . GetKey (KeyCode . Space) && keyHoldTime >=
1 f && PauseMenu . pause == f a l s e && viewMode .

viewMode == f a l s e)
{

i s B u l l e t i n O n = true ;
keyHoldTime = 0 . 0 f ;
b u l l e t i n U I . Se tAct ive (t rue) ;
Time . t imeSca le = 0 . 0 f ;

}
}

}

publ ic void introduct ionBut ton () //funct ion applied to
i n t r o d u c t i o n button ; unloads the home UI and loads the

i n t r o d u c t i o n UI
{

introduct ionUI . Se tAct ive (t rue) ;
b u l l e t i n U I . Se tAct ive (f a l s e) ;

}

publ ic void contro l sBut ton () //funct ion applied to
c o n t r o l s button ; unloads the home UI and loads the
c o n t r o l s UI

{
contro lsUI . Se tAct ive (t rue) ;
b u l l e t i n U I . Se tAct ive (f a l s e) ;

}

publ ic void homeButton () //funct ion applied to home
button ; unloads the c o n t r o l & i n t r o d u c t i o n UI and
loads the home UI

{
introduct ionUI . Se tAct ive (f a l s e) ;
contro lsUI . Se tAct ive (f a l s e) ;
b u l l e t i n U I . Se tAct ive (t rue) ;

}

publ ic void e x i t B u t t o n () //funct ion applied to e x i t
button ; c l o s e s the b u l l e t i n UI and un−pauses time

{
i s B u l l e t i n O n = f a l s e ;
b u l l e t i n U I . Se tAct ive (f a l s e) ;
Time . t imeSca le = 1 . 0 f ;

}

Appendix A. Walkies Code 81

}

A.5 LevelLoad.cs

using UnityEngine . SceneManagement ;

publ ic c l a s s LevelLoad : MonoBehaviour
{

/∗
The LevelLoad s c r i p t i s at tached to a l l of the l e v e l

i n d i c a t o r s in the hub scene . I t i s r e s p o n s i b l e f o r
determining when to load the l e v e l scenes ; i f the
player i s within radius and holds down space , as well

as which scene s e t t i n g to load .
∗/

GameObject player ;
f l o a t keyHoldTime = 0 . 0 f ;
s t r i n g l e v e l S e t t i n g ;

[S e r i a l i z e F i e l d]
GameObject fadeIn ;
f l o a t t imer ;
bool timerOn ;

[S e r i a l i z e F i e l d] // s e r i a l i z e d f i e l d to hold music t h a t
plays when the player i s about to s t a r t a l e v e l

GameObject s tar tMusic ;

void S t a r t ()
{

player = GameObject . Find (" Player ") ;
timerOn = f a l s e ;
t imer = 0 . 0 f ;

}

void Update ()
{

f l o a t p a r t i c l e R a d i u s = t h i s . GetComponent<
Part ic leSystem > () . shape . radius ;

f l o a t d i s t a n c e = Vector3 . Distance (t h i s . transform .
pos i t ion , player . transform . p o s i t i o n) ; //gets
d i s t a n c e from player to the l e v e l i n d i c a t o r (t h i s)

i f (d i s t a n c e <= p a r t i c l e R a d i u s) // check player i s
within d i s t a n c e of the l e v e l i n d i c a t o r

{
i f (Input . GetKey (KeyCode . Space)) // counts time

the space key i s being held f o r
{

keyHoldTime += Time . deltaTime ;

Appendix A. Walkies Code 82

}

i f (Input . GetKey (KeyCode . Space) && keyHoldTime >=
1 f) // t r i g g e r s time to load l e v e l scene i f

space i s c u r r e n t l y being held f o r more than a
few seconds , playing the s t a r t music and
turning on the fade in animation

{
timerOn = true ;
fadeIn . Se tAct ive (t rue) ;
s tar tMusic . Se tAct ive (t rue) ;

}
}

i f (timerOn == true) //timer i s t rue when l e v e l i s
ready to s t a r t a f t e r previous t r i g g e r

{
t imer += Time . deltaTime ;
i f (t imer >= 2 . 0 f) //loads l e v e l scene once a few

seconds have passed a f t e r holding down space
within the l e v e l i n d i c a t o r (al lowing time f o r
the fade in animation to complete)

{

switch (t h i s . tag) //checks tag of current
l e v e l i n d i c a t o r to load corresponding
l e v e l

{
case " suburb " :

l e v e l S e t t i n g = " SuburbLevels " ;
break ;

case " park " :
l e v e l S e t t i n g = " ParkLevels " ;
break ;

case " town " :
l e v e l S e t t i n g = " TownLevels " ;
break ;

case " manhole " :
l e v e l S e t t i n g = " ManholeLevels " ;
break ;

}

keyHoldTime = 0 . 0 f ;
LevelOverMenu . isLevelOver = f a l s e ; //ensures

game can be paused when s t a r t i n g a new
l e v e l

SceneManager . LoadScene (l e v e l S e t t i n g ,
LoadSceneMode . S ing le) ;

}
}

}

Appendix A. Walkies Code 83

}

A.6 LevelOverMenu.cs

using UnityEngine . SceneManagement ;
using UnityEngine . UI ;

publ ic c l a s s LevelOverMenu : MonoBehaviour
{

/∗
The LevelOverMenu s c r i p t i s at tached to the l e v e l over

menu UI within the l e v e l s . I t i s r e s p o n s i b l e f o r
deciding what to do when the l e v e l i s over ,
determining how many s t a r s (i f any) the player
rece ives , and deciding what to do when the return to
hub button i s pressed .

∗/

[S e r i a l i z e F i e l d]
GameObject fadeIn ;

f l o a t t imer ;
bool timerOn ;
i n t score ;
publ ic s t a t i c bool isLevelOver = f a l s e ; //publ ic s t a t i c

bool holds r e f e r e n c e f o r LevelPauseMenu to know i f
game can be paused or not (only paused i f l e v e l isn ’ t
over)

[S e r i a l i z e F i e l d] // s e r i a l i z e d s t a r f i e l d s hold the s t a r
game o b j e c t s − used to show/hide the s t a r s dependent
on the player ’ s score upon l e v e l over

GameObject s t a r 1 ;
[S e r i a l i z e F i e l d]
GameObject s t a r 2 ;
[S e r i a l i z e F i e l d]
GameObject s t a r 3 ;

[S e r i a l i z e F i e l d] // s e r i a l i z e d f o o t s t e p s f i e l d to hold
f o o t s t e p s audio

GameObject f o o t s t e p s ;
[S e r i a l i z e F i e l d] // s e r i a l i z e d l e v e l over f i e l d holds the

l e v e l over UI
GameObject levelOver ;

// S t a r t i s c a l l e d before the f i r s t frame update
void S t a r t ()
{

Appendix A. Walkies Code 84

isLevelOver = true ;
timerOn = f a l s e ; //ensures t imer i s r e s e t
t imer = 0 . 0 f ;
f o o t s t e p s . Se tAct ive (f a l s e) ; //turns o f f f o o t s t e p s

audio as soon as the l e v e l ends
levelOver . Se tAct ive (t rue) ; // a c t i v a t e s the l e v e l over

UI as soon as the l e v e l ends
}

// Update i s c a l l e d once per frame
void Update ()
{

score = L e v e l P l a y e r C o n t r o l l e r . d i s t a n c e I n t ; //gets the
f i n a l score from the L e v e l P l a y e r C o n t r o l l e r s c r i p t

i f (score >= 200)
{

s t a r 1 . Se tAct ive (t rue) ; // i f score i s 200 or over ,
player ge ts 1 s t a r
i f (score >= 500)
{

s t a r 2 . Se tAct ive (t rue) ; // i f score i s 500
or over , player ge ts 2 s t a r s

i f (score >= 1000)
{

s t a r 3 . Se tAct ive (t rue) ; // i f score
i s 1000 or over , player ge ts

3 s t a r s
}

}
}

i f (timerOn == true) //timer i s t rue once return to
hub button i s c l i c k e d

{
t imer += Time . deltaTime ;
i f (t imer >= 2 . 0 f) //loads hub scene once a few

seconds have passed a f t e r press ing the s t a r t
button (al lowing time f o r the fade in
animation to complete)

{
SceneManager . LoadScene ("Hub" , LoadSceneMode .

S ing le) ;
}

}
}

publ ic void returnToHubButton () //funct ion applied to the
return to hub button − turns on the fade in animation

, and s e t s the t imer on to t r i g g e r load of hub scene
{

fadeIn . Se tAct ive (t rue) ;

Appendix A. Walkies Code 85

timerOn = true ;
}

}

A.7 LevelOverUIText.cs

using UnityEngine . UI ;

publ ic c l a s s LevelOverUIText : MonoBehaviour
{

/∗
The LevelOverUIText s c r i p t i s r e s p o n s i b l e f o r r e t r i e v i n g

the f i n a l score of the l e v e l , to convert and display
in the l e v e l over UI .

∗/

L e v e l P l a y e r C o n t r o l l e r player ;
publ ic Text scoreText ;

// S t a r t i s c a l l e d before the f i r s t frame update
void S t a r t ()
{
}

// Update i s c a l l e d once per frame
void Update ()
{

scoreText . t e x t = L e v e l P l a y e r C o n t r o l l e r . d i s t a n c e I n t .
ToStr ing () + "m" ; //gets f i n a l score from the
L e v e l P l a y e r C o n t r o l l e r s c r i p t , adds ’m’ f o r meters

}
}

A.8 LevelPauseMenu.cs

using UnityEngine . SceneManagement ;

publ ic c l a s s LevelPauseMenu : MonoBehaviour
{

/∗
The LevelPauseMenu s c r i p t i s at tached to the pause menu

UI within the l e v e l s . I t i s r e s p o n s i b l e f o r
determining when to pause the l e v e l , as well as
determining the a c t i o n to take when e i t h e r the resume

or return to hub buttons are pressed .
∗/

publ ic s t a t i c bool pause ; //publ ic s t a t i c v a r i a b l e holds
pause s t a t e of l e v e l f o r r e f e r e n c e

Appendix A. Walkies Code 86

[S e r i a l i z e F i e l d] // s e r i a l i z e d f i e l d to hold the pause UI
game o b j e c t f o r the l e v e l s

GameObject levelPauseUI ;

[S e r i a l i z e F i e l d]
GameObject fadeIn ;
f l o a t t imer ;
bool timerOn ;

[S e r i a l i z e F i e l d] // s e r i a l i z e d f i e l d to hold f o o t s t e p s
audio

GameObject f o o t s t e p s ;

// S t a r t i s c a l l e d before the f i r s t frame update
void S t a r t ()
{

t imer = 0 . 0 f ; //ensures t imer i s r e s e t
timerOn = f a l s e ;
pause = f a l s e ; //ensures the game i s not paused at

runtime
}

// Update i s c a l l e d once per frame
void Update ()
{

i f ((Input . GetKeyDown (KeyCode . P) || Input . GetKeyDown (
KeyCode . Escape)) && LevelOverMenu . isLevelOver ==
f a l s e) // i f the escape key or p i s pressed , and
the game i s not c u r r e n t l y paused or l e v e l over ,
pause s t a t e i s s e t to t rue ; turning o f f f o o t s t e p
audio , f r e e z i n g game time , and a c t i v a t i n g the
pauseUI .

{
i f (pause == f a l s e)
{

pause = true ;
f o o t s t e p s . Se tAct ive (f a l s e) ;
levelPauseUI . Se tAct ive (t rue) ;
Time . t imeSca le = 0 . 0 f ;

}
e l s e // i f the game i s c u r r e n t l y paused , the

previous changes are reversed by running the
resume funct ion (thus game i s unpaused)

{
resumeButton () ;

}
}

Appendix A. Walkies Code 87

i f (timerOn == true) //timer i s t rue when return to
hub button i s pressed , loads hub scene a f t e r a few

seconds have passed (enough time f o r fade in
animation to play)

{
t imer += Time . deltaTime ;
i f (t imer >= 5 . 0 f)
{

SceneManager . LoadScene ("Hub" , LoadSceneMode .
S ing le) ;

}
}

}

publ ic void resumeButton () //funct ion applied to resume
button , i s a l s o used i f the escape or p key i s pressed

while game i s c u r r e n t l y pause . Removes pause UI ,
turns back on f o o t s t e p audio , and un−f r e e z e s game time

{
pause = f a l s e ;
f o o t s t e p s . Se tAct ive (t rue) ;
levelPauseUI . Se tAct ive (f a l s e) ;
Time . t imeSca le = 1 . 0 f ;

}

publ ic void returnToHubButton () //funct ion applied to the
return to hub button , t r i g g e r s the t imer on to load

the hub scene a f t e r a few seconds . Unfreezes time f o r
next scene

{
timerOn = true ;
fadeIn . Se tAct ive (t rue) ;
Time . t imeSca le = 1 . 0 f ;

}
}

A.9 LevelPlayerController.cs

using UnityEngine . SceneManagement ;

publ ic c l a s s L e v e l P l a y e r C o n t r o l l e r : MonoBehaviour
{

/∗
The L e v e l P l a y e r C o n t r o l l e r s c r i p t i s at tached to the

player game o b j e c t within a l l of the l e v e l s . I t i s
r e s p o n s i b l e f o r moving the player in the l e v e l s ,
t r i g g e r i n g the l e v e l end , playing c o l l i s i o n audio ,
and updating the d i s t a n c e score .

∗/

f l o a t moveSpeed ;

Appendix A. Walkies Code 88

publ ic s t a t i c i n t l i v e s ; //publ ic s t a t i c al lows the
d i s t a n c e UI to a c c e s s the v a r i a b l e f o r l i v e v i s i b l e
updating

publ ic s t a t i c i n t d i f f i c u l t y ; //publ ic s t a t i c al lows
v a r i a b l e to be updated upon ac ce s s i ng a l e v e l in
d i f f e r e n t scene (hub)

f l o a t d i s t a n c e ;
publ ic s t a t i c i n t d i s t a n c e I n t ; //publ ic s t a t i c al lows the

d i s t a n c e UI to a c c e s s the v a r i a b l e f o r l i v e v i s i b l e
updating

publ ic s t a t i c bool audioPlayObstacle = f a l s e ;
publ ic s t a t i c bool audioPlayPowerUp = f a l s e ;
AudioSource obstacleAudio , powerUpAudio ;

[S e r i a l i z e F i e l d]
GameObject levelOverUI ; //var to hold the UI f o r the

l e v e l over
bool pause ;

// S t a r t i s c a l l e d before the f i r s t frame update
void S t a r t ()
{

moveSpeed = 1 0 . 0 f ;
l i v e s = 3 ; // s t a r t s the player o f f with 3 l i v e s
d i s t a n c e = 0 . 0 f ; // s t a r t s the player o f f with a score

of 0
d i f f i c u l t y = P l a y e r C o n t r o l l e r . d i f f i c u l t y ; //gets the

l e v e l d i f f i c u l t y from the hub player o b j e c t

obstacleAudio = GameObject . Find (" ObstacleAudio ") .
GetComponent<AudioSource > () ; //sources audio

powerUpAudio = GameObject . Find (" PowerUpAudio ") .
GetComponent<AudioSource > () ;

switch (d i f f i c u l t y) //changes player speed dependent
on l e v e l d i f f i c u l t y (higher l e v e l s = slower player
)

{
case 1 :

moveSpeed = 3 . 0 f ;
break ;

case 2 :
moveSpeed = 2 . 5 f ;
break ;

case 3 :
moveSpeed = 1 . 5 f ;
break ;

case 4 :
moveSpeed = 1 . 3 f ;
break ;

}

Appendix A. Walkies Code 89

}

// Update i s c a l l e d once per frame
void Update ()
{

pause = LevelPauseMenu . pause ; //gets the pause s t a t u s
from the LevelPauseMenu s c r i p t

//LEVEL SCORE
i f (pause == f a l s e && l i v e s > 0) // i f statement

updates d i s t a n c e score (i f game isn ’ t paused and
player has l i v e s)

{
d i s t a n c e += 0 . 1 f ;

}
d i s t a n c e I n t = Mathf . RoundToInt (d i s t a n c e) ; //makes

d i s t a n c e readable ; i n t e g e r form

//PLAYER MOVEMENT
i f (Input . GetKey (KeyCode . LeftArrow) || Input . GetKey (

KeyCode .A)) //move player l e f t
{

transform . T r a n s l a t e (Vector3 . l e f t ∗ Time . deltaTime
∗ moveSpeed) ;

}
e l s e i f (Input . GetKey (KeyCode . RightArrow) || Input .

GetKey (KeyCode .D)) //move player r i g h t
{

transform . T r a n s l a t e (Vector3 . r i g h t ∗ Time .
deltaTime ∗ moveSpeed) ;

}

//COLLISION AUDIO
i f (audioPlayObstacle == true) // t r i g g e r to play

o b s t a c l e audio − bool v a r i a b l e i s changed to true
in SpawnBehaviour s c r i p t

{
obstacleAudio . Play () ;
audioPlayObstacle = f a l s e ; // r e s e t s v a r i a b l e to

allow f o r replay
}
e l s e i f (audioPlayPowerUp == true) // t r i g g e r to play

powerup audio − bool v a r i a b l e i s changed to true
in SpawnBehaviour s c r i p t

{
powerUpAudio . Play () ;
audioPlayPowerUp = f a l s e ; // r e s e t s v a r i a b l e to

allow f o r replay
}

Appendix A. Walkies Code 90

//LEVEL OVER
i f (l i v e s <= 0) // i f player has 0 l i v e s (or l e s s) ,

l e v e l ends by bringing up the l e v e l over UI
{

levelOverUI . Se tAct ive (t rue) ;
}

}

}

A.10 LevelUIText.cs

using UnityEngine . UI ;

publ ic c l a s s LevelUIText : MonoBehaviour
{

/∗
The LevelUIText s c r i p t i s at tached to the l e v e l overlay

UI in the l e v e l s , and i s used to convert the l i f e and
d i s t a n c e score values from v a r i a b l e s to s t r i n g s f o r

v i s i b l e use in the UI .
∗/

L e v e l P l a y e r C o n t r o l l e r player ;
publ ic Text l i v e s T e x t ;
publ ic Text d i s tanceText ;

// S t a r t i s c a l l e d before the f i r s t frame update
void S t a r t ()
{
}

// Update i s c a l l e d once per frame
void Update ()
{

l i v e s T e x t . t e x t = L e v e l P l a y e r C o n t r o l l e r . l i v e s . ToStr ing
() ;

d i s tanceText . t e x t = L e v e l P l a y e r C o n t r o l l e r . d i s t a n c e I n t
. ToStr ing () + "m" ;

}
}

A.11 MoveFloor.cs

publ ic c l a s s MoveFloor : MonoBehaviour {

/∗

Appendix A. Walkies Code 91

The MoveFloor s c r i p t i s at tached to a l l of the road game
o b j e c t s found in the l e v e l scenes . This s c r i p t i s
r e s p o n s i b l e f o r moving the roads in a conveyor−l i k e
fashion , and randomly generat ing the o b s t a c l e s and
power−ups .

∗/

i n t d i f f i c u l t y ;
GameObject player ;
f l o a t speed ;
GameObject road ;
f l o a t t imer = 0 f ;
GameObject spawn ;
Vector3 spawnArea ;
i n t spawnX ;
f l o a t spawnZ ;
bool pause ;
i n t l i v e s ;
f l o a t randLower ;
f l o a t randHigher ;

[S e r i a l i z e F i e l d] // s e r i a l i z e d f i e l d s to hold the
o b s t a c l e and power up game o b j e c t prefabs

GameObject hydrant , poop , manhole , t r e a t , drink ;

// Use t h i s f o r i n i t i a l i z a t i o n
void S t a r t () {
player = GameObject . Find (" LevelPlayer ") ;
d i f f i c u l t y = 1 ; // v a r i a b l e i n i t i a l i s a t i o n
d i f f i c u l t y = P l a y e r C o n t r o l l e r . d i f f i c u l t y ; //gets

current l e v e l d i f f i c u l t y from P l a y e r C o n t r o l l e r
s c r i p t

l i v e s = 3 ;

switch (t h i s . name) //switch statement decides which
road the current road needs to spawn to the back
of when i t t e l e p o r t s back ; l i k e a conveyor chain .
road 1 −> road 3 −> road 2 −> road 1 .

{
case " Road1 " :

GameObject road3 = GameObject . Find (" Road3 ") ;
road = road3 ;
break ;

case " Road2 " :
GameObject road1 = GameObject . Find (" Road1 ") ;
road = road1 ;
break ;

case " Road3 " :
GameObject road2 = GameObject . Find (" Road2 ") ;
road = road2 ;
break ;

Appendix A. Walkies Code 92

}

switch (d i f f i c u l t y) //changes road speed , and r a t e of
spawns dependent on l e v e l d i f f i c u l t y ; higher the

d i f f i c u l t y the higher the road speed and more
of ten the spawns

{
case 1 :

speed = 0 . 3 f ;
randLower = 2 f ;
randHigher = 3 . 5 f ;
break ;

case 2 :
speed = 0 . 4 f ;
randLower = 1 . 5 f ;
randHigher = 3 f ;
break ;

case 3 :
speed = 0 . 5 f ;
randLower = 1 f ;
randHigher = 2 . 5 f ;
break ;

case 4 :
speed = 0 . 6 f ;
randLower = 1 f ;
randHigher = 2 f ;
break ;

}
}

// Update i s c a l l e d once per frame
void Update () {
l i v e s = L e v e l P l a y e r C o n t r o l l e r . l i v e s ; //gets updated

l i v e s from L e v e l P l a y e r C o n t r o l l e r s c r i p t
pause = LevelPauseMenu . pause ; //gets pause s t a t e of

l e v e l from LevelPauseMenu s c r i p t
Vector3 pos = transform . p o s i t i o n ; // v a r i a b l e pos

holds current p o s i t i o n of road
f l o a t roadSize = t h i s . GetComponent<Renderer > () . bounds

. s i z e . z ;

//ROAD MOVEMENT
i f (pause == f a l s e && l i v e s > 0) //road w i l l continue

to move as long as the game isn ’ t paused or the
player i s out of l i v e s

{
t h i s . transform . T r a n s l a t e (0 , 0 , −speed) ;

}

Appendix A. Walkies Code 93

i f (t h i s . transform . p o s i t i o n . z <= (player . transform .
p o s i t i o n . z − roadSize /2 − 5)) //checks road
p o s i t i o n in the world , i f completely past the
player the road w i l l t e l e p o r t to the back of the
l a s t road in the ’ conveyor ’ . the road v a r i a b l e
r e f e r s to the road ahead of t h i s road in the
conveyor . Z p o s i t i o n r e f e r s to the c e n t e r of the
road o b j e c t , and so t h i s checks f o r the z p o s i t i o n

minus h a l f of the road length in comparison to
the player p o s i t i o n .

{
pos . z = road . transform . p o s i t i o n . z + roadSize ;
transform . p o s i t i o n = pos ;

}

//OBJECT SPAWNING
timer += Time . deltaTime ;
f l o a t rand = Random . Range (randLower , randHigher) ; //

generates random value based on l e v e l d i f f i c u l t y
to determine time range between new spawns

i f (rand <= timer && pause == f a l s e && t h i s . transform
. p o s i t i o n . z >= 50) // i f game isn ’ t paused , and
p o s i t i o n i s s u f f i c i e n t l y f a r from the player , game

w i l l spawn a new o b j e c t every x seconds
{

t imer = 0 f ;
spawnGen () ;

}

}

void spawnGen () //spawnGen funct ion randomly spawns an
o b s t a c l e or power−up .

{
f l o a t spawnGen = Random . Range (0 f , 100 f) ; //generates

random value to choose a spawn o b j e c t

i f (spawnGen >= 0 f && spawnGen <= 26 f) //25% chance
f o r spawn to be a f i r e hydrant

{
spawn = hydrant ;

}
e l s e i f (spawnGen >= 26 f && spawnGen <= 51 f) //25%

chance f o r spawn to be a poop
{

spawn = poop ;
}
e l s e i f (spawnGen >= 51 f && spawnGen <= 81 f) //30%

chance f o r spawn to be a manhole
{

spawn = manhole ;

Appendix A. Walkies Code 94

}
e l s e i f (spawnGen >= 81 f && spawnGen <= 91 f) //10%

chance f o r spawn to be a dog bone
{

spawn = t r e a t ;
}
e l s e i f (spawnGen >= 91 f && spawnGen <= 101 f) //10%

chance f o r spawn to be an energy drink
{

spawn = drink ;
}
e l s e //Spawns f i r e hydrant and debug t e x t i f somehow

none of the previous spawn
{

spawn = hydrant ;
p r i n t (spawnGen) ;
p r i n t (" You shouldn ’ t be here ! ") ;

}

spawnX = Random . Range (1 6 , 25) ; //generates random x
coordinate within the road

f l o a t zLower = t h i s . transform . p o s i t i o n . z − 2 5 ;
f l o a t zUpper = t h i s . transform . p o s i t i o n . z + 2 5 ;
spawnZ = Random . Range (zLower , zUpper) ; //generates

random z coordinate within the current road

var o b s t a c l e = I n s t a n t i a t e (spawn , new Vector3 (spawnX ,
0 . 5 f , spawnZ) , Quaternion . i d e n t i t y) ; //

i n s t a n t i a t e s new spawn based on the previously
determined v a r i a b l e s

o b s t a c l e . transform . parent = t h i s . transform ; // s e t s
the j u s t−spawned o b j e c t ’ s parent to be t h i s road ;
thus the o b j e c t moves along on the road

}
}

A.12 PauseMenu.cs

using UnityEngine . SceneManagement ;

publ ic c l a s s PauseMenu : MonoBehaviour
{

/∗
The PauseMenu s c r i p t i s at tached to the pause menu UI

within the hub scene . I t i s r e s p o n s i b l e f o r
determining whether and how to pause the game , and
what a c t i o n s to take when the resume or qui t buttons
are pressed within the pause UI .

∗/

publ ic s t a t i c bool pause ;

Appendix A. Walkies Code 95

[S e r i a l i z e F i e l d] // s e r i a l i z e d f i e l d to hold the pause UI
game o b j e c t

GameObject pauseUI ;
P l a y e r C o n t r o l l e r viewMode ;

// S t a r t i s c a l l e d before the f i r s t frame update
void S t a r t ()
{

pause = f a l s e ; //ensures game isn ’ t paused on runtime
viewMode = GameObject . Find (" Player ") . GetComponent<

PlayerContro l l e r > () ;
}

// Update i s c a l l e d once per frame
void Update ()
{

i f ((Input . GetKeyDown (KeyCode . P) || Input . GetKeyDown (
KeyCode . Escape)) && B u l l e t i n U I . i s B u l l e t i n O n ==
f a l s e && viewMode . viewMode == f a l s e) // i f escape or
p key are pressed , and not in view mode or

b u l l e t i n on , game i s paused i f not already paused ;
f r e e z i n g game time and turning on the pause UI

{
i f (pause == f a l s e)
{

pause = true ;
pauseUI . SetAct ive (t rue) ;
Time . t imeSca le = 0 . 0 f ;

}
e l s e // i f game i s paused , run resume button

funct ion ; r e v e r t s pause changes by turning o f f
the pause UI , and unfreezing game time

{
resumeButton () ;

}
}

}

publ ic void resumeButton () //funct ion applied to resume
button , a l s o runs i f the game i s paused and the player

presses escape or p key . Reverts changes made when
game i s paused

{
pause = f a l s e ;
pauseUI . SetAct ive (f a l s e) ;
Time . t imeSca le = 1 . 0 f ;

}

publ ic void quitButton () //funct ion applied to qui t
button , q u i t s the a p p l i c a t i o n upon c l i c k

{

Appendix A. Walkies Code 96

Appl icat ion . Quit () ;
}

}

A.13 PlayerController.cs

publ ic c l a s s P l a y e r C o n t r o l l e r : MonoBehaviour
{

/∗
The P l a y e r C o n t r o l l e r s c r i p t i s at tached to the player

game o b j e c t . This s c r i p t i s r e s p o n s i b l e f o r moving the
player , turning on view mode , f inding and s t o r i n g the
l e v e l d i f f i c u l t y value , respawning the player i f they
manage to get out of bounds , and spawning the player

a dog f r i e n d .
∗/

Animator move , dogMove ;
f l o a t rotat ionSpeed ;
f l o a t runSpeed ;
f l o a t walkSpeed ;
GameObject cameraMouse ;
f l o a t camX , camY , camZ ; // v a r i a b l e s to hold camera r e s e t

r o t a t i o n values
publ ic bool viewMode ;
publ ic s t a t i c i n t d i f f i c u l t y ;
publ ic s t a t i c bool hasDog ;
publ ic s t a t i c i n t dogType ;
i n t dogCount ;
GameObject [] l e v e l s ;
GameObject townEasy , townMedium , townHard , parkEasy ,

parkMedium , parkHard , suburbsEasy , suburbsMedium ,
suburbsHard ;

GameObject b u l l e t i n P a r t i c l e s , townManhole , parkManhole ,
suburbManhole ;

GameObject introduct ionUI ;
f l o a t townManholeD , parkManholeD , suburbManholeD ;
f l o a t d i s t a n c e ;
f l o a t p a r t i c l e R a d i u s ;
f l o a t s m a l l P a r t i c l e R a d i u s ;

[S e r i a l i z e F i e l d]
GameObject foots tep , woof , dog , dogBlack , dogBlonde ,

dogGrey , dogWhite ;

// S t a r t i s c a l l e d before the f i r s t frame update
void S t a r t ()
{

hasDog = f a l s e ;
dogType = 0 ;
dogCount = 0 ;

Appendix A. Walkies Code 97

move = gameObject . GetComponentInChildren<Animator > () ;
// r e f e r e n c e to player animator

dogMove = gameObject . GetComponentInChildren<Animator
> () ;

cameraMouse = GameObject . Find (" Camera ") ;
rotat ionSpeed = 200 .0 f ;
runSpeed = 4 . 0 f ;
walkSpeed = 1 . 0 f ;
camX = 20 f ;
camY = 0 . 0 f ;
camZ = 0 . 0 f ;
cameraMouse . GetComponent<MouseCamera > () . enabled =

f a l s e ;
viewMode = f a l s e ;
d i s t a n c e = 0 . 0 f ;
d i f f i c u l t y = 0 ;
introduct ionUI = GameObject . Find (" Introduct ionUI ") ;

//LEVELS
b u l l e t i n P a r t i c l e s = GameObject . Find (" B u l l e t i n

p a r t i c l e s ") ;
townEasy = GameObject . Find (" TownEasy ") ;
townMedium = GameObject . Find (" TownMedium ") ;
townHard = GameObject . Find (" TownHard ") ;
parkEasy = GameObject . Find (" ParkEasy ") ;
parkMedium = GameObject . Find (" ParkMedium ") ;
parkHard = GameObject . Find (" ParkHard ") ;
suburbsEasy = GameObject . Find (" SuburbsEasy ") ;
suburbsMedium = GameObject . Find (" SuburbsMedium ") ;
suburbsHard = GameObject . Find (" SuburbsHard ") ;
l e v e l s = new GameObject [9] ; // l e v e l s array s t o r e s

r e f e r e n c e s to a l l of the l e v e l i n d i c a t o r s within
the hub

l e v e l s [0] = townEasy ;
l e v e l s [1] = parkEasy ;
l e v e l s [2] = suburbsEasy ;
l e v e l s [3] = townMedium ;
l e v e l s [4] = parkMedium ;
l e v e l s [5] = suburbsMedium ;
l e v e l s [6] = townHard ;
l e v e l s [7] = parkHard ;
l e v e l s [8] = suburbsHard ;

townManhole = GameObject . Find (" townManhole ") ;
parkManhole = GameObject . Find (" parkManhole ") ;
suburbManhole = GameObject . Find (" suburbManhole ") ;

p a r t i c l e R a d i u s = townEasy . GetComponent<Part ic leSystem
> () . shape . radius ;

s m a l l P a r t i c l e R a d i u s = b u l l e t i n P a r t i c l e s . GetComponent<
Part ic leSystem > () . shape . radius ;

Appendix A. Walkies Code 98

i f (StartMenu . firstGame == f a l s e) //prevents
i n t r o d u c t i o n t e x t from appearing i f the player i s
re turning a f t e r a l e v e l

{
introduct ionUI . Se tAct ive (f a l s e) ;

}
}

// Update i s c a l l e d once per frame
void Update ()
{

// t r i g g e r f o r i n t r o d u c t i o n t e x t to fade away upon
f i r s t load

i f ((Input . GetKey (KeyCode . UpArrow) || Input . GetKey (
KeyCode .W) || Input . GetKey (KeyCode . DownArrow) ||
Input . GetKey (KeyCode . S) || Input . GetKey (KeyCode .
LeftArrow) || Input . GetKey (KeyCode .A) || Input .
GetKey (KeyCode . RightArrow) || Input . GetKey (KeyCode
.D) || Input . GetKey (KeyCode .V) || Input . GetKey (
KeyCode . P) || Input . GetKey (KeyCode . Escape)) &&
StartMenu . firstGame == true)

{
StartMenu . firstGame = f a l s e ;
introduct ionUI . GetComponent<Animator > () . enabled =

true ;
}

//VIEW MODE (f r e e view with mouse , d i s a b l e s player
movement)

i f (Input . GetKeyDown (KeyCode .V))
{

i f (viewMode == f a l s e && PauseMenu . pause == f a l s e
) //goes i n t o view mode i f not already , game
isn ’ t paused , and v key i s pressed

{
viewMode = true ;
cameraMouse . GetComponent<MouseCamera > () .

enabled = true ;
}
e l s e // i f in view mode , and v i s pressed , toggle

view mode o f f & r e s e t camera p o s i t i o n
{

viewMode = f a l s e ;
cameraMouse . GetComponent<MouseCamera > () .

enabled = f a l s e ;
camY = t h i s . transform . eulerAngles . y ; //update

camera ’ s Y r e s e t p o s i t i o n r o t a t i o n to be
t h a t of the player ’ s current Y r o t a t i o n

Appendix A. Walkies Code 99

cameraMouse . transform . eulerAngles = new
Vector3 (camX , camY , camZ) ; // r e s e t camera
to be f a c i n g player

}
}

//PLAYER MOVEMENT
i f ((Input . GetKey (KeyCode . UpArrow) || Input . GetKey (

KeyCode .W)) && viewMode == f a l s e && PauseMenu .
pause == f a l s e) //moves player forward i f up arrow

or w i s pressed , game isn ’ t paused , and not in
view mode

{
move . S e t I n t e g e r (" RunOn" , 1) ; //turns on run

animation
f o o t s t e p . Se tAct ive (t rue) ; // f o o t s t e p audio i s on

when moving
transform . T r a n s l a t e (Vector3 . forward ∗ runSpeed ∗

Time . deltaTime) ; //forward c o n t r o l

i f (hasDog == true) // i f player has a dog , s e t s
dog animation to run a l s o

{
dogMove . S e t I n t e g e r (" RunOn" , 1) ;

}
}
e l s e //when i d l e
{

move . S e t I n t e g e r (" RunOn" , 0) ; //turns o f f run
animation

f o o t s t e p . Se tAct ive (f a l s e) ; //turns o f f f o o t s t e p
audio

i f (hasDog == true) // i f player has a dog , s e t s
dog animation to i d l e a l s o

{
dogMove . S e t I n t e g e r (" RunOn" , 0) ;

}
}

i f ((Input . GetKey (KeyCode . DownArrow) || Input . GetKey (
KeyCode . S)) && viewMode == f a l s e) //moves player
backwards i f down arrow or s i s pressed , game isn ’
t paused , and not in view mode

{
move . S e t I n t e g e r (" WalkOn " , 1) ; //turns on walk

animation
transform . T r a n s l a t e (Vector3 . back ∗ walkSpeed ∗

Time . deltaTime) ; //backward c o n t r o l

Appendix A. Walkies Code 100

i f (hasDog == true) // i f player has a dog , s e t s
dog animation to walk a l s o

{
dogMove . S e t I n t e g e r (" WalkOn " , 1) ;

}
}
e l s e
{

move . S e t I n t e g e r (" WalkOn " , 0) ; //turns o f f run
animation

i f (hasDog == true) // i f player has a dog , s e t s
dog animation to i d l e a l s o

{
dogMove . S e t I n t e g e r (" WalkOn " , 0) ;

}
}

i f ((Input . GetKey (KeyCode . LeftArrow) || Input . GetKey (
KeyCode .A)) && viewMode == f a l s e) // r o t a t e camera
l e f t i f not in view mode , and l e f t arrow or a i s
pressed

{
transform . Rotate (Vector3 . down ∗ rotat ionSpeed ∗

Time . deltaTime) ;
}
e l s e i f ((Input . GetKey (KeyCode . RightArrow) || Input .

GetKey (KeyCode .D)) && viewMode == f a l s e) // r o t a t e
camera r i g h t i f not in view mode , and r i g h t arrow
or d i s pressed

{
transform . Rotate (Vector3 . up ∗ rotat ionSpeed ∗

Time . deltaTime) ;
}

//KILL ZONE (out of bounds)
i f (transform . p o s i t i o n . x <= −35 || transform . p o s i t i o n

. x >= −2 || transform . p o s i t i o n . z <= −11 ||
transform . p o s i t i o n . z >= 78)

{
transform . p o s i t i o n = new Vector3 (−19.59 f , 0 . 285 f ,

−4.885 f) ; // t e l e p o r t s player back to s t a r t i f
they somehow get out of bounds

}

//LEVEL DIFFICULTY
i f (Input . GetKeyDown (KeyCode . Space)) { //fol lowing

code runs i f space i s pressed

//SETTING NORMAL LEVEL DIFFICULTIES

Appendix A. Walkies Code 101

f o r (i n t i = 0 ; i < l e v e l s . Length ; i ++) // f o r
loops through the array of a l l the l e v e l
i n d i c a t o r s in the scene ; i f player i s within
radius of any of them , s e t s d i f f i c u l t y
corresponding to index of array (f i r s t 3
indexes are easy l e v e l i n d i c a t o r s , next 3
medium l e v e l i n d i c a t o r s , l a s t 3 hard l e v e l
i n d i c a t o r s)

{
d i s t a n c e = Vector3 . Distance (l e v e l s [i] .

transform . pos i t ion , t h i s . transform .
p o s i t i o n) ;

i f (d i s t a n c e <= p a r t i c l e R a d i u s) // check
player i s within d i s t a n c e of the l e v e l
i n d i c a t o r

{
i f (i >= 0 && i <= 2)
{

d i f f i c u l t y = 1 ; //easy d i f f i c u l t y
value

}
e l s e i f (i >= 3 && i <= 5)
{

d i f f i c u l t y = 2 ; //medium d i f f i c u l t y
value

}
e l s e i f (i >= 6 && i <= 8)
{

d i f f i c u l t y = 3 ; //hardest d i f f i c u l t y
value

}
}

}

//SETTING MANHOLE DIFFICULTY
townManholeD = Vector3 . Distance (townManhole .

transform . pos i t ion , t h i s . transform . p o s i t i o n) ;
//gets d i s t a n c e of player to a l l 3 manholes in

the hub scene
parkManholeD = Vector3 . Distance (parkManhole .

transform . pos i t ion , t h i s . transform . p o s i t i o n) ;
suburbManholeD = Vector3 . Distance (suburbManhole .

transform . pos i t ion , t h i s . transform . p o s i t i o n) ;
i f (townManholeD <= s m a l l P a r t i c l e R a d i u s ||

parkManholeD <= s m a l l P a r t i c l e R a d i u s ||
suburbManholeD <= s m a l l P a r t i c l e R a d i u s) //
check player i s within radius of any of the
manholes ; i f so , s e t s d i f f i c u l t y to hardest

{
d i f f i c u l t y = 4 ;

}

Appendix A. Walkies Code 102

//GETTING A DOG
i f (hasDog == true && dogCount == 0) //player

only obta ins a dog i f they c u r r e n t l y don ’ t
have one , and hasDog has been t r i g g e r e d on
from the AIDogBehaviour s c r i p t

{
woof . Se tAct ive (t rue) ; //plays bark audio when

dog i s obtained
dogCount += 1 ; //updates dogCount v a r i a b l e to

prevent player from g e t t i n g any more dogs
switch (dogType) //dogType v a r i a b l e i s

updated once t r i g g e r has been performed in
the AIDogBehaviour s c r i p t . Corresponding

dog colour game o b j e c t i s s e t a c t i v e as
per below

{
case 1 :

dog . SetAct ive (t rue) ;
dogMove = dog . GetComponentInChildren<

Animator > () ;
break ;

case 2 :
dogBlack . Se tAct ive (t rue) ;
dogMove = dogBlack .

GetComponentInChildren<Animator > ()
;

break ;
case 3 :

dogBlonde . SetAct ive (t rue) ;
dogMove = dogBlonde .

GetComponentInChildren<Animator > ()
;

break ;
case 4 :

dogGrey . SetAct ive (t rue) ;
dogMove = dogGrey .

GetComponentInChildren<Animator > ()
;

break ;
case 5 :

dogWhite . Se tAct ive (t rue) ;
dogMove = dogWhite .

GetComponentInChildren<Animator > ()
;

break ;
}

}
}

}

Appendix A. Walkies Code 103

}

A.14 SpawnBehaviour.cs

publ ic c l a s s SpawnBehaviour : MonoBehaviour
{

/∗
The SpawnBehaviour s c r i p t i s at tached to a l l the spawned

o b s t a c l e s and power−ups within the l e v e l s . I t i s
r e s p o n s i b l e f o r d e t e c t i n g c o l l i s i o n s between the
o b j e c t and e i t h e r the k i l l b o x (which destroys the
o b j e c t) , or the player or dog (which determines
whether a l i f e should be l o s t or added e t c .) .

∗/

i n t l i v e s ;

// S t a r t i s c a l l e d before the f i r s t frame update
void S t a r t ()
{
}

// Update i s c a l l e d once per frame
void Update ()
{
}

void OnTriggerEnter (C o l l i d e r c o l l i s i o n) //OnTriggerEnter
i s a Unity funct ion t h a t holds information about
c o l l i s i o n s in the c o l l i s i o n v a r i a b l e

{
i f (c o l l i s i o n . gameObject . name == " Ki l lBox ") //

destroys game o b j e c t i f i t c o l l i d e s with the
k i l l b o x ; i e . goes past the player (prevents
o b j e c t s from making a second round on the conveyor
)

{
Destroy (gameObject) ;

}

i f (c o l l i s i o n . gameObject . name == " LevelPlayer " ||
c o l l i s i o n . gameObject . name == "Dog" &&
LevelPauseMenu . pause == f a l s e) //Tr iggers
fol lowing code i f game o b j e c t c o l l i d e r s with the
player or the dog , and the game isn ’ t paused

{
l i v e s = L e v e l P l a y e r C o n t r o l l e r . l i v e s ; //gets

current l i v e s

Appendix A. Walkies Code 104

switch (t h i s . name) //gets the name of the current
game o b j e c t to r e f e r to . I f o b j e c t i s a f i r e

hydrant , manhole , or poop , and the player has
1 or more l i v e s , player l o s e s a l i f e and
o b s t a c l e audio plays . I f o b j e c t i s an energy
drink or dog bone , and the player has l e s s
than 5 l i v e s , player gains a l i f e and power up

audio plays .
{

case " f i r e h y d r a n t Variant (Clone) " :
i f (l i v e s >= 1)
{

l i v e s −= 1 ;
L e v e l P l a y e r C o n t r o l l e r .

audioPlayObstacle = true ;
}
break ;

case " manhole Variant (Clone) " :
i f (l i v e s >= 1)
{

l i v e s −= 1 ;
L e v e l P l a y e r C o n t r o l l e r .

audioPlayObstacle = true ;
}
break ;

case " poop Variant (Clone) " :
i f (l i v e s >= 1)
{

l i v e s −= 1 ;
L e v e l P l a y e r C o n t r o l l e r .

audioPlayObstacle = true ;
}
break ;

case " energydrink Variant (Clone) " :
i f (l i v e s < 5)
{

l i v e s +=1;
L e v e l P l a y e r C o n t r o l l e r .

audioPlayPowerUp = true ;
}
break ;

case " bone Variant (Clone) " :
i f (l i v e s < 5)
{

l i v e s += 1 ;
L e v e l P l a y e r C o n t r o l l e r .

audioPlayPowerUp = true ;
}
break ;

}

Appendix A. Walkies Code 105

L e v e l P l a y e r C o n t r o l l e r . l i v e s = l i v e s ; //updates
l i v e s

Destroy (gameObject) ; //game o b j e c t i s destroyed
upon c o l l i s i o n with the player or dog .
Prevents from a c c i d e n t a l l y double−c o l l i d i n g
with the same o b j e c t

}
}

}

A.15 StartMenu.cs

using UnityEngine . SceneManagement ;

publ ic c l a s s StartMenu : MonoBehaviour
{

/∗
The StartMenu s c r i p t i s at tached to the s t a r t menu in

the s t a r t scene . I t i s r e s p o n s i b l e f o r determining
what to to when the buttons within the s t a r t UI are
c l i c k e d .

∗/

[S e r i a l i z e F i e l d]
GameObject fadeIn ; //allows f o r r e f e r e n c e to fade in

animation o b j e c t

f l o a t t imer ;
bool timerOn ;
publ ic s t a t i c bool f irstGame = true ; //publ ic s t a t i c to

hold game s t a t e of whether the player has loaded the
hub before or not (and thus to inform the scene
whether the i n t r o d u c t i o n t e x t should show or not)

// S t a r t i s c a l l e d before the f i r s t frame update
void S t a r t ()
{

timerOn = f a l s e ; //ensures t imer i s r e s e t
t imer = 0 . 0 f ;

}

// Update i s c a l l e d once per frame
void Update ()
{

i f (timerOn == true) //timer s t a r t s when true (thus
when s t a r t button i s pressed)

{
t imer += Time . deltaTime ;

Appendix A. Walkies Code 106

i f (t imer >= 2 . 0 f) //loads hub scene once a few
seconds have passed a f t e r press ing the s t a r t
button (al lowing time f o r the fade in
animation to complete)

{
SceneManager . LoadScene ("Hub" , LoadSceneMode .

S ing le) ;
}

}

}

publ ic void s t a r t B u t t o n () //funct ion t h a t i s applied to
the s t a r t button

{
fadeIn . Se tAct ive (t rue) ; //fadeIn animation a c t i v a t e s

once s t a r t button i s pressed
timerOn = true ; // s t a r t s timer , to allow time f o r

fade animation to run r a t h e r than immediately
loading the hub scene

}

publ ic void quitButton () //funct ion t h a t i s applied to
the qui t button ; q u i t s a p p l i c a t i o n upon c l i c k

{
Appl icat ion . Quit () ;

}
}

107

Appendix B

Walkies Assets

Bench

Bone

Appendix B. Walkies Assets 108

Bulletin board

Bush 1

Bush 2

Appendix B. Walkies Assets 109

Dog

Energy drink

Fire hydrant

Appendix B. Walkies Assets 110

Flowers

Lamppost

Mailbox

Appendix B. Walkies Assets 111

Man

Manhole

Path

Appendix B. Walkies Assets 112

Picket fence

Player

Player - baseball cap

Appendix B. Walkies Assets 113

Poop

Road

Road block

Appendix B. Walkies Assets 114

Rock

Suburban house

Townhall

Appendix B. Walkies Assets 115

Townhouse

Trash can

Tree 1

Appendix B. Walkies Assets 116

Tree 2

Woman

Wood fence

117

Appendix C. Walkies Survey 118

Appendix C

Walkies Survey

Appendix C. Walkies Survey 119

Appendix C. Walkies Survey 120

121

Appendix D

Weekly Logs

D.1 Week 1 – w/c 21/01/2019

Over the Christmas holidays, I started to look into the feasibility of me using Blender
for modelling in my project. I looked at a few tutorials, and also looked into if Maya
was feasible – you have to pay for it, so I decided to stick with Blender.

For the first two weeks of term, I wrote down a more solidified plan for my game:

• Scrapped having a customisable character (unless I have time down the line)

• Added a 3-star ranking system

• Changed the design to have a 3D hub world in which you walk to various lev-
els (signified by a coloured ring in which you step into – green = easy, yellow
= medium, red = hard) – 2D pixel style levels in which you walk a dog whilst
avoiding obstacles (manholes, etc.) and gain powerups (dog treats, etc.)

• Potential for having NPC AI around the hub world (as I will be learning about
AI in this term’s module, Games AI Programming)

• Potential for having different states of the hub world (decrepit = no scores on
any levels, thriving = 3 stars on all levels)

For the second week back (first week of labs), we discussed using LaTeX for our
final report. Unfortunately, I was preoccupied and rather busy this week, and my
supervisor is in Paris next week, so I will be meeting with him the week after –
giving me plenty of time to provide substantial material to go over with him.

Next week I plan to look further into Blender – downloading it and testing it out
myself, as well as playing around with C# in Unity in order to get more comfortable
with the language and scripting in Unity.

D.2 Week 2 – w/c 28/01/2019

The past week I downloaded Blender and played around with it. Additionally, I
viewed more in-depth character tutorials including:

• Modelling

• UV Mapping

• Texturing

• Rigging

Appendix D. Weekly Logs 122

• Animation

These gave me an idea of the timeframe it would take me to make models – I hope
to make a base character model, with small adjustments (e.g colours, hair length)
for different NPCs. To help me in visualising models, I listed all the models I would
need to make for my game (such as NPCs, cars, dogs, trees, houses – town & subur-
ban – fences, flowers, fire hydrants, trash cans, bones, energy drinks, manholes)

I also planned out a design document, as this weekend I will be making a de-
tailed design document to go through with my supervisor on Monday, including
gameplay features, level design, map design, other features (e.g. day/night cycle),
and additional features (features that I would like to include if I have time).

In my Games AI module, we learned about Finite State Machines and Behaviour
Trees, helping me in thinking about how AI would work in the game. I also looked
at a car AI tutorial to see if that is feasible – likely to be an additional feature, rather
than base.

Next week I plan to make a base human model in which I can then make the
other NPC & player character model off of – and hopefully animate. By starting
with the most complex model, this will get the hardest part out of the way and get
me used to modelling lesser complexity environment models. In general, I’d like
to get the modelling out of the way so I can focus on coding for the majority of the
project time.

D.3 Week 3 – w/c 4/02/2019

This week, I finished writing up a detailed design document for my project and went
over it in person with my supervisor. Generally, it looked good, however he sug-
gested to pick a specific technical aspect to expand on – whether that be something
like procedural generation, or AI. As I’m doing a module in Games AI alongside, I
will probably choose to focus on this in order to maximise my marks. My detailed
design document will likely be included somewhere in my final submission – e.g. in
the appendix.

I also sketched out the character and environment designs for my models and
started work on the base character model in Blender. I would like to get this finished
by next week.

My supervisor said it would also be nice if I could get a basic prototype working
first, to see how it works in gameplay. I agree, and thus plan on making a basic pro-
totype for the levels next week – a basic infinite runner where you gather powerups
whilst avoiding obstacles. This would also be good timing in order to talk about the
prototype in my preliminary project report.

I started thinking about how the prototype will work in terms of specific logic –
likely, I will have 2 (or 3) ground objects, which queue in front of the character when
they reach x point (in order to create an infinite looking ground). The powerup and
obstacle objects will have the possibility of spawning in 1 of x (around 5) columned
points at any given time (randomised). Once spawned, they will move towards the
player until they reach a certain point (behind the player), at which they de-spawn.

D.4 Week 4 – w/c 11/02/2019

Unfortunately, I did not get as much done this week as I would have liked, as I have
been preoccupied and get most of the work done on weekends. I did, however, start

Appendix D. Weekly Logs 123

a new Unity project in which I touched upon testing out the level logic for my game.
I plan to finish that this weekend, so I have something to show my supervisor next
week, and to discuss in my preliminary project report.

I also looked through the preliminary project report requirements and started
planning out what I will write for each part, as well as ensuring I will have solid
progress complete by the beginning of next week – which I can discuss in my PPL.

In my Games AI module this week, we learned about pathfinding – a topic which
will be useful in regards to my implementation of AI in my game.

D.5 Week 5 – w/c 18/02/2019

This week I focussed on writing my preliminary project report. Although my already-
made design document helped with the aims and objectives section, I still had to
detail out my plans for the rest of my project, as well as delve into what I’ve done so
far.

I aimed to finish the first level prototype this week – however this did not get
finished due to me underestimating the difficulty of it, as well as my preoccupation
with the preliminary project report. I will make sure to finish this prototype by the
end of February at the latest, in order for me to not lag too far behind on my project.

My supervisor sent me some helpful game design document templates, and we
discussed what I should include within my preliminary project report. Additionally,
we discussed available software to use for LaTex – should I not want to learn the
syntax myself – and other forms of Git for version control.

D.6 Week 6 – w/c 25/02/2019

I do not have much to report on this week due to being busy with other preoccupa-
tions. Throughout the week I have just been working on the basic level implemen-
tation – infinite runner style. I aim to complete this over the weekend, as detailed in
my preliminary project report, and will be meeting with my supervisor next week
to discuss it.

D.7 Week 7 – w/c 4/03/2019

This week I have done a few various random things – not necessarily sticking to my
plan of finishing the level prototype. While I have expanded on the logic used for
the level prototype, and considered other ways to go about it, I have mainly been
working on other aspects of the game this week. This has included transportation
between the world hub and the levels, creating funky particle systems for this trans-
portation as indicators, and work on the world hub itself – blocking out the layout.

Additionally, I have been going through a Unity course on Udemy, in an at-
tempt to become more comfortable with all aspects of the engine. Lastly, as we went
through procedural content generation in this week’s Games AI lecture, I have con-
sidered and briefly planned out a way in which I could add some procedural gener-
ation to the hub creation – such as splitting it up into prefab chunks, and generating
from there in a fixed grid (spawn x town chunks, x suburb chunks, x park chunks
next to each other, for x in a grid).

Appendix D. Weekly Logs 124

D.8 Week 8 – w/c 11/03/2019

This week has been another busy week for me, and thus I have not done as much
as I would have hoped. Instead I have been watching various Brackeys videos, with
tips on game design and Unity. Additionally, I have made a custom skybox for my
project.

I met up with my supervisor this week and we just checked in that things are
going ok. Although I’m a little bit behind, I’m not worried as I will have much more
spare time in the upcoming weeks to really sit down and power through the work –
the current issue is my lack of time, rather than not knowing what to do.

Lastly, I looked into and discussed more about character animation in the lab
session - keyframes needed, and considering the detail needed for animations and
character controller.

D.9 Week 9 – w/c 18/03/2019

This week I finally managed to complete my level implementation. While it was
intended to be a prototype, it’s closer to the final version and just needs tweaking
regarding level difficulty and different settings. There is an infinite road, randomly
spawned obstacles & powerups (each object having a different weighting), lives, and
ability to move the character left and right. All that is left to do is to finetune numer-
ical values for the various difficulties – affecting the speed of the level, number &
rarity of obstacles & powerups.

I did not meet my supervisor this week as he in in Asia. However, I will be
meeting him next week and hope to be able to look at previous examples of game-
specific final year projects in order to get an idea of the level of complexity I need to
implement to get a good grade.

As I am behind on my plan outlined in my preliminary project report, I have
re-planned the next few weeks in the schedule, as follows:

• 25/03-31/03: Create and finalise all GUIs – including but not limited to: start/-
pause menus, and bulletin board. Start modelling all assets – human and en-
vironment. Clean up & finalise level implementations (namely difficulty).

• 1/04-07/04: Finish up modelling and anything not finishing in the previous
week. Layout everything in the world – asset-wise – and finish styling for the
whole game. Should animating human models prove to be more difficult than
I anticipate, I plan to fall back on using capsule models – these bob around
instead of walking with arms and legs.

• 8/04-14/04: Start working on AI.

• 15/04-21/04: Finish working on AI.

• 22/04-28/04: Finish up the whole game, giving me an opportunity to add
any small extra features, play around with procedural generation, or finish
anything that I did not already in the previous weeks. If all is good, start on
the report. I am also away for half of this week so will not have as much time.
Ideally, I would like to get a final draft complete in good time to get feedback
from my supervisor.

• 29/04-17/05: Continue & finish writing report. Hand in.

Appendix D. Weekly Logs 125

Now that I have a better idea of how long it will take me to complete various
tasks, in addition to the extra time I will have over Easter, I can make a more accurate
plan- although my previous plan outlined the basic deadlines that have not changed.
I should note that testing is an ongoing process throughout all of development, as
no specific time is set aside for it.

For next week, I will just be working on the tasks outlined in the plan above –
prioritising finishing all the details in the level implementations.

D.10 Week 10 – w/c 25/03/2019

This week I finished fine-tuning the values for my level implementations, affecting
the 3 difficulties. This involved constant testing and playing around with various
numbers to see which felt right – replaying the level to see if scoring was consistent
enough, and that the hard difficulty was a sufficient challenge.

I have plans to meet my supervisor at the start of next week, where I hope to
show him my progress to date and view previous project examples.

Additionally, I started modelling assets, using both Blender for basic environ-
ment assets (not character models yet as they are more complex), and Unity’s tree
maker in order to ensure my tree assets can sway in the wind with Unity terrain
wind zone feature.

The GUIs have been implemented in a basic sense – requiring styling to finish. I
need to find an appropriate font, and to create a logo using vector graphics. I also
plan on making a canvas to have an animated start screen.

Although this is the last weekly log, the next month will be the time for me to
buckle down working on my project, as I am yet to start writing my report or cre-
ating the AIs for my hub world (as outlined in my revised plan to start in approxi-
mately 2 weeks).

126

Appendix E

Original Proposal

E.1 Introduction

I propose to make a first-person, single-player, offline video game, centered around
dog walking. It will be made using Unity 3D, for PC. The game will have a brighter,
cartoonish/stylistic design, set in a suburban town. Gameplay features may include:
a point system (high scores etc.), customisable character (dependent on allowing
third-person camera view), a hub world (sandbox style), various levels to play (e.g.
go to any dog to start a level, avoid obstacles, collect power-ups etc., randomly gen-
erated)

The motivation behind this project is due to my love of video games, and want-
ing to pursue making/designing them as a career after University. The project in-
tends to provide entertainment for fellow video game lovers.

E.2 Methods/Skills

The project will require Unity (free), and potentially a modelling software - such as
Blender 3D (free) - should I choose to model (and animate) my own assets. However,
there are free and paid-for assets available on the Unity store should I decide not
to model my own. These software applications are free, and available on macOS,
Windows, and Linux operating systems, thus I have ready access to them.

I have acquired the skills needed through various modules during my time at
University - including (but not limited to) Programming, Maths, Games AI Program-
ming (due to start in term 2), and 3D Virtual Environments and Animation. As I am
not entirely proficient in C#, I will need to further these skills through independent
study. I will also have to learn to use Blender (modelling and animating) should I
choose to make my own assets - this is very achievable through independent study,
with an abundance of resources and tutorials online (likewise for Unity).

The project may potentially be made VR compatible - dependent on time con-
straints. Initially the project will be designed with just PC in mind, however. VR
headsets (HTC Vive, and Oculus Rift) are available to loan from the University
should I decide to go down this route.

E.3 Project Evaluating

The project will be evaluated on various things, such as: complexity of gameplay
features, how well they were implemented, how polished the final result is (any
bugs/glitches? everything working as it should? good visuals? audio? overall
game design? etc.), the variety of features included, and techniques involved.

Appendix E. Original Proposal 127

E.4 Project Planning

Christmas holidays: Play around with Unity, potential modelling in Blender, decide
on gameplay features (rank in list of importance - prioritise etc., look into feasibility),
design style etc.

January: Design game map, visuals, GUI, overall game design. Basic implemen-
tation in Unity.

February: Implement the technical features into the game. Basic visual design.
Preliminary project report.

March: Continue technical implementation, modelling, overall visual design of
the game. Start final report.

April: Finishing up the project. Final testing, focussing on report.
May: Any last minute project changes, finalising and submitting report.

E.5 References

Unity - https://unity3d.com/
Blender - https://docs.blender.org/manual/en/latest/index.html

128

Appendix F

Design Document

WALKIES DESIGN DOCUMENT
Final Year Project

Molly Mason
2019

F.1 Overview

‘Walkies’ will be a third person 3D dog walking game. It will be developed in Unity
using C#, with assets modelled and animated using Blender. The name comes from
the term ‘walkies’ - a term ‘said to a dog to tell it it’s time for a walk’.

Inspired by games like ‘Crazy Taxi’ and ‘Cubefield’, the game will feature a hub
world, where the player can walk around a suburban town to select levels of vary-
ing difficulty. Within the levels, the player will have to walk a dog for the furthest
distance possible, whilst collecting power-ups and avoiding obstacles.

The art style is inspired by games such as ‘A Hat In Time’, ‘Overcooked’, ‘Glover’,
and ‘Epic Mickey’; having a fun, simple, cartoonish, and colourful theme.

Appendix F. Design Document 129

F.2 Controls

The game will be made for PC only.

F.3 Levels

There will be around 9 levels - 3 for each are of the world; town, suburbs, and dog
park (different visuals for each area). These will be indicated through a visual circle
on the ground in the hub world, with a colour to signify its difficulty - green for easy,
yellow/orange for medium, red for hard - as well as an NPC with a dog standing in
it. An example of this is found in Crazy Taxi:

The levels will consist of the avatar moving forward at a constant speed, with the
player being able to move their avatar left and right to avoid oncoming obstacles and
collect power-ups - similar to Cubefield. The score is indicated through a distance
number (in km) - the higher the better - that increases constantly.

The player will start off with 3 hearts of life, indicated by icons in the top right
corner. Up to 2 extra lives at a time can be gained by walking through power-ups
- the avatar will flash green when this happens. 1 life is lost per obstacle walked
through - the avatar will flash red when this happens. The level ends when the
player loses all 3 lives.

Appendix F. Design Document 130

The difficulty will affect the speed of the avatar, as well as the frequency of the ob-
stacles and power ups (hard = more obstacles, less power ups, faster starting speed).
The level will get gradually faster the longer it goes on.

After a level ends, the player is greeted with a UI stating their final distance and
equivalent grade - 1 to 3 stars (3 being the best) - as well as the amount of power ups
collected and obstacles collided, similar to Overcooked:

Level scores are saved automatically upon finishing a level.

F.4 Environment

The game will be set in a small town, featuring a town area, a dog park, and a
suburban area. Each of the distinct areas would feature 3 levels - one easy, one
medium, one hard. The level decoration corresponds to its location - the town would
have you walking through town, suburbs walking through suburbs, park walking
through park. None of the buildings will be enterable.

The hub world will have roads and paths to walk on. The town will have con-
nected buildings, similar to typical town environments. The suburbs will have sep-
arated typical American suburban style one storey houses, complete with white
picket fences and front gardens - colours may differ between houses for some varia-
tion. The dog park will be a typical park. Environment design will be most similar
to The Simpsons Hit and Run:

Appendix F. Design Document 131

Inaccessible areas will be indicated with road block assets, preventing access
with invisible walls.

Set decoration around the area may include: trees, bushes, fire hydrants, trash
cans, dogs, mail boxes. These cannot be interacted with.

The world may also include AI - primarily human AI, but possibly also car AI.
The AI would not be interact-able with, and would roam the world independently.
Human NPCs would all use the same base model, with 2 hairstyles (one for females,
one for males), and colour variations for clothing and hair.

F.5 GUI

The game will have a start and pause menu. The start menu will feature a Start,
Settings, and Quit option buttons. The pause menu will have a Resume, Scores,
Settings, and Quit option buttons.

Within the Settings, the player can change audio settings (using sliders), as well
as choose to reset the game - takes them to the start menu, and wipes all saved
scores and any other saved options (including purchased hats - discussed later on in
the document). Settings will save automatically upon changing them.

The pause menu comes up as an overlay on the player’s game, with the game
still in the background. The start menu background may be a random picture of the
game, or a panning camera view of the game environment.

Level scores can be viewed via the pause menu, or I may choose to implement
a ‘bulletin board’ feature in-game in which you can access them instead. These will
be similar to the pop up shown when finishing a level, except more compact, to fit 3

Appendix F. Design Document 132

levels of the area on the screen - click arrows to flip through the different areas scores
(town, suburbs, park).

F.6 Other

Other features that I plan to include, however some might get cut due to time re-
strictions.

F.6.1 Hat shop

The hat shop would be an enterable building found in the town. It would not be
available (locked) until the player has completed at least one level. It would be
entered by walking through a blackened out doorway, indicated by an arrow on the
ground. The building would consist of a room with the display of purchasable hats,
a desk with a cash register on, and a shop assistant NPC. The player can press space
to go into ‘hat purchasing mode’ - a fixed view in the shop which allows players to
click arrow keys on screen to look through the selection of hats available to buy and
wear with stars earned from levels.

Each option would have a box interface with a ‘buy’ or ‘wear’ button (dependent
on whether the player has bought the item), along with the price and potentially
a description. The ‘buy’ button would be greyed out if the player does not have
enough stars. Stars are cumulative, and do not get removed once they are ‘spent’. A
‘ca-ching’ sound plays when the player buys an item.

A comparable 2D interface to this would be in the former doodly.io:

F.6.2 Day/Night system

A day/night system would feature day and night skyboxes, and a clock interface in
the top left corner - simple text to indicate the time. One minute would equal one
hour. The world lighting would start off brightest at noon, and gradually lower to
darkness at 8pm starting from 5/6pm, again lightening from around 6am.

The time of day would only affect the skybox and world lighting - lamp posts
around the world would turn on and turn off after a certain time.

F.6.3 Weather system

A weather system would give the chance for the world to cycle randomly through
rain, grey cloud, and sunny weather options. This would only affect world lighting,
skyboxes, and audio.

This option seems less likely to implement due to technical considerations, such
as rain slowing the game down.

Appendix F. Design Document 133

F.6.4 Loading screen

I may include a simple loading screen. It will likely just flash a simple ‘Loading. . . ’
text with a random faded scenic background picture from the game.

134

Appendix G

Preliminary Project Report

Goldsmiths, University of London
IS53007D: Computing Project (2018-19)

Preliminary Project Report
Molly Mason

February 2019

G.1 Introduction

For my final year project I am making a 3D video game, using C# in Unity. The
game itself is a third-person, single player, offline game, centered around ‘infinite
runner’-style dog walking levels, and its suburban town-style hub world. It is called
‘Walkies’, the name originating from the term said to a dog to tell it that it’s time for
a walk.

Various courses throughout my degree will help in this project, namely Program-
ming and Algorithm modules, but also my third year 3D Environments and Anima-
tion, and Game AI Programming modules.

I chose this project due to my passion for video games, and hope to extend this
into a career within the gaming industry after graduation. Additionally, the subject
matter of the game is related to my personal love for dogs. My supervisor for the
project is Frederic Fol Leymarie.

G.2 Aims and Objectives

My aims for this project is to produce a fully-working, high-quality, 3D video game.
I aim to produce the majority of the assets used in the game myself, by making char-
acter and environment models, and a theme song - in addition to the code required.
The art style for the design of assets and GUIs will follow a bright, cartoonish, fun,
and simple theme - inspired by games such as ‘A Hat in Time’ (Gears for Breakfast,
2019), ‘Overcooked’ (Ghost Town Games, 2015), ‘Glover’ (Wikipedia.org, 2019), and
‘Epic Mickey’ (Disney.com, 2019).

All of the following objectives detailed in this game design outline will help to
meet my aim of producing a high-quality 3D video game.

G.2.1 Controls

The game will be made for PC only.

Appendix G. Preliminary Project Report 135

G.2.2 Game levels

My game ‘Walkies’ will feature 9 levels - 3 for each area of the world; town, suburbs,
and dog park (different visuals for each area). These will be indicated through a
visual circle on the ground in the hub world, with a colour to signify its difficulty -
green for easy, yellow/orange for medium, red for hard - as well as an NPC with a
dog standing in it.

The levels will consist of the avatar moving forward at a constant speed, with
the player being able to move their avatar left and right to avoid randomly-spawned
oncoming obstacles and collect power-ups - similar to ‘Cubefield’ (Cubefield, 2019).
The score is indicated through a distance number (in km) - the higher the better -
that increases constantly.

The player will start off with 3 hearts of life, indicated by icons in the top right
corner. Up to 2 extra lives at a time can be gained by walking through power-ups
- the avatar will flash green when this happens. 1 life is lost per obstacle walked
through - the avatar will flash red when this happens. The level ends when the
player loses all 3 lives.

The difficulty will affect the speed of the avatar, as well as the frequency of the ob-
stacles and power ups (hard = more obstacles, less power ups, faster starting speed).
The level will get gradually faster the longer it goes on. After a level ends, the player
is greeted with a UI stating their final distance and equivalent grade - 1 to 3 stars (3
being the best) - as well as the amount of power ups collected and obstacles collided.
Level scores are saved automatically upon finishing a level.

G.2.3 Game Environment

The game will be set in a small town, featuring a town area, a dog park, and a
suburban area. Each of the distinct areas would feature 3 levels - one easy, one
medium, one hard. The level decoration corresponds to its location - the town would

Appendix G. Preliminary Project Report 136

have you walking through town, suburbs walking through suburbs, park walking
through park. None of the buildings will be enterable.

The hub world will have roads and paths to walk on. The town will have con-
nected buildings, similar to typical town environments. The suburbs will have sep-
arated typical American suburban style one storey houses, complete with white
picket fences and front gardens - colours may differ between houses for some varia-
tion. The dog park will be a typical park.

Inaccessible areas will be indicated with road block assets, preventing access
with invisible walls. Set decoration around the area will include: trees, bushes, fire
hydrants, trash cans, dogs, mail boxes. These cannot be interacted with.

The world will include basic human AI. Human NPCs would all use the same
base model, with 2 hairstyles (one for females, one for males), and colour variations
for clothing and hair.

G.2.4 GUI

The game will have a start and pause menu. The start menu will feature a Start,
Settings, and Quit option buttons. The pause menu will have a Resume, Scores,
Settings, and Quit option buttons.

Within the Settings, the player can change audio settings (using sliders), as well
as choose to reset the game - takes them to the start menu, and wipes all saved scores
and any other saved options. Settings will save automatically upon changing them.

The pause menu comes up as an overlay on the player’s game, with the game
still in the background. The start menu background will be a custom animated back-
ground of blue sky scenery. A plain loading screen will be visible whilst levels are
loading.

Level scores will be viewed via a ‘bulletin board’ feature in-game. This will be
similar to the pop up shown when finishing a level, except more compact, to fit
3 levels of the area on the screen - click arrows to flip through the different areas
scores (town, suburbs, park).

G.2.5 Other

A feature to incentivise players to replay levels for the best score is that of the hat
shop. This will be an enterable building found in the town. It will not be available
(locked) until the player has completed at least one level, and can be entered by
walking through a blackened out doorway, indicated by an arrow on the ground.

The building will consist of a room with the display of purchasable hats, a desk
with a cash register on, and a shop assistant NPC. The player can press space to go
into ‘hat purchasing mode’ - a fixed view in the shop which allows players to click
arrow keys on screen to look through the selection of hats available to buy and wear
with stars earned from levels.

Each option would have a box interface with a ‘buy’ or ‘wear’ button (dependent
on whether the player has bought the item), along with the price and a humorous
description. The ‘buy’ button will be greyed out if the player does not have enough
stars. Stars are cumulative, and do not get removed once they are ‘spent’. A ‘ca-
ching’ sound plays when the player buys an item.

Dependent on time constraints, I may look into implementing a Day and Night
system, a Weather system.

Appendix G. Preliminary Project Report 137

G.2.6 Summary

To summarise, the main deliverables needed for my project can be split up into the
following categories:

• Hub world creation

• Level creation

• Artificial Intelligence (AI) implementation

• GUI creation

• Asset modelling

G.3 Methods

In order to achieve my aims detailed in the previous section, I will be using the
video game engine Unity (Unity Technologies, 2019) to make the game, writing code
in the language C#. 3D assets - such as character and environment models - will be
modelled using the modelling software Blender. For the game design, I have already
utilised a game design document template to help me plan out my project in detail.

I intend to use Unity as it is a free software, widely available for use. Its main
language, C#, is very similar to Java - which I learned in my year 2 programming
module, and thus learning it shouldn’t be too hard. Blender (Blender, 2019) will be
used for modelling as it is also a widely available free software. Both of these pro-
grams have multitudes of tutorials available online, to help me through the learning
process - as I will be learning as I go on this project.

For any graphic design needed for GUIs, I will likely be using a mixture of
free graphics editor software GIMP (GIMP, 2019), and free vector graphics software
Inkscape (Inkscape, 2019). I will be using these as I am already familiar with them,
in addition to them also being free and widely available.

Git (Git, 2019) version control may also be used to backup my project code, with
Github (Github, Inc., 2019). For any sounds, I will likely use freesound (Freesound,
2019), for free to use sound effects.

I plan to focus on AI in the project, once the base features are all completed. This
will use a mixture of finite state machines and behaviour trees for a suitable level of
complexity in relation to the rest of the project design and time constraints. These
methods will also be suitable due to having learnt them recently in my Game AI
Programming module.

G.4 Project Plan

Here is my plan detailing all deliverables and goals I plan to reach and when, from
the past Christmas, to now, up until the final due date on May 17th:

Appendix G. Preliminary Project Report 138

G.5 Progress to Date

So far, my work has primarily consisted of planning out the game design, assets,
GUIs, and world layout [Appendix A].

Additionally, as a lot of the methods used in this project are new to me, I have
mainly been teaching myself the necessary knowledge in which to program my
game and model the assets. So far, I do not have any concrete finalised work, in-
stead just test models and environments to feel confident enough in my skills.

This has included Unity’s Official Tutorials (Unity Technologies, 2019), as well as
following Darrin Lile’s Blender Character modelling series on Youtube (Lile, 2014).
In addition to just character modelling, I have learned about UV mapping, character
rigging, character animation, and how to export and import Blender models into the
Unity environment.

Background research to help me visualise and plan the overall game design has
been conducted by looking into, and gaining inspiration from games such as:

• The Simpsons Hit and Run (town design, level pickup design) (Wikipedia.org,
2019)

Appendix G. Preliminary Project Report 139

• Overcooked (character design)

• A Hat in Time (overall art style and tone)

This has consisted of watching gameplay - what makes it entertaining? - as well
as observing level and character design - what makes it so charming? I did look into
other games, such as ‘Yooka-Laylee’ (Playtonic Games, 2019), ‘Super Mario Odyssey’
(Nintendo, 2019), and ‘Slime Rancher’ (Monomi Park, 2019); however those listed
felt more appropriate to my project. This background research led to the creation of
a design document for ‘Walkies’ - in which I received feedback about my envisioned
project from my supervisor, and included details from it within this report.

Recently I have started to make a prototype for the levels, involving multiple
plane objects that move (in a conveyor-like fashion) once the player reaches a certain
point on the following plane - giving the illusion of an infinite road/path. This has
proven to be harder than I initially anticipated, already setting my planned progress
back a bit.

Testing the assets I may need in Unity also led me to discover that I will need to
alter Unity’s standard third-person controller asset (Unity Technologies, 2019) to fit
my control design. Currently, Unity’s third-person controller script moves the player
using WASD keys in addition to arrow keys, as opposed to my planned WASD for
movement, arrow keys for camera.

G.6 Planned Work

Right now, the project is in the very early stages of prototype implementation. I
intend to continue this prototype implementation, aiming to finish the level creation
by the end of February at the latest. This consists of getting the infinite road to work,
as well as randomly spawning a mixture of power-up objects and obstacle objects.
Lastly, the life and score system will be implemented. It is likely that I will not add
any styling to the environment until I’m at a further stage in the project.

Getting this main hurdle out of the way will allow me to focus on other aspects
of the project, namely building the hub world, implementing some AI, and adding
the GUIs. Lower priority goals are that of the hat shop, and overall modelling and
styling of the game - these can be left until the harder parts are out of the way.

G.7 Appendix

G.7.1 Appendix A

Design Sketches

Appendix G. Preliminary Project Report 140

Appendix G. Preliminary Project Report 141

G.8 References

Blender. 2019. blender.org - Home of the Blender project - Free and Open 3D Cre-
ation Software [Online]. Available at: https://www.blender.org/ [Accessed: 22
February 2019].

Cubefield.org.uk. 2019. Cubefield - Play Online Free! [Online]. Available at:
http://www.cubefield.org.uk/ [Accessed: 22 February 2019].

Disney.com. 2019. Disney Epic Mickey | Disney LOL [Online].
https://lol.disney.com/games/disney-epic-mickey-video-game [Accessed: 22 Febru-
ary 2019].

Freesound. 2019. Freesound - freesound [Online]. Available at: https://freesound.org/
[Accessed: 22 February 2019].

GIMP. 2019. GIMP - GNU Image Manipulation Program [Online]. Available at:
https://www.gimp.org/ [Accessed: 22 February 2019].

Gears for Breakfast. 2019. A Hat in Time - Cute-as-heck 3D Platformer! [Online].
Available at: http://hatintime.com/ [Accessed: 22 February 2019].

Ghost Town Games. 2015. Overcooked [Online]. Available at:
http://www.ghosttowngames.com/overcooked/ [Accessed: 22 February 2019].

Git, 2019. Git [Online]. Available at: https://git-scm.com/ [Accessed: 22 Febru-
ary 2019].

GitHub, Inc. 2019. The world’s leading software development platform - Github
[Online]. Available at: https://github.com/ [Accessed: 22 February 2019].

Inkscape. 2019. Draw Freely | Inkscape [Online]. Available at: https://inkscape.org/
[Accessed: 22 February 2019].

Lile, D. 2014. Blender Character Modeling 1 of 10 [Online]. Available at:
https://www.youtube.com/watch?v=0QT1GNMevfc [Accessed: 22 February 2019].

Monomi Park. 2019. Slime Rancher [Online]. Available at: http://slimerancher.com/
[Accessed: 22 February 2019].

Nintendo. 2019. Super Mario OdysseyTM for the Nintendo SwitchTM home gam-
ing system - Official Game Site [Online]. Available at: https://supermario.nintendo.com/
[Accessed: 22 February 2019].

Playtonic Games. 2019. Yooka-Laylee - Playtonic Games [Online]. Available
at: https://www.playtonicgames.com/games/yooka-laylee/ [Accessed: 22 Febru-
ary 2019].

Unity Technologies. 2019. Unity Learn Tutorials [Online]. Available at:
https://unity3d.com/learn/tutorials [Accessed: 22 February 2019].

Unity Technologies. 2019. Standard Assets - Asset Store [Online]. Available
at: https://assetstore.unity.com/packages/essentials/asset-packs/standard-assets-
32351 [Accessed: 22 February 2019].

Unity Technologies. 2019. Unity [Online]. Available at: https://unity3d.com/
[Accessed: 22 February 2019].

Wikipedia.org. 2019. Glover (video game) - Wikipedia [Online]. Available at:
https://en.wikipedia.org/wiki/Glover_(video_game) [Accessed: 22 February 2019].

Wikipedia.org. 2019. The Simpsons: Hit & Run - Wikipedia [Online]. Available
at: https://en.wikipedia.org/wiki/The_Simpsons:_Hit_%26_Run [Accessed: 22 Febru-
ary 2019].

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Aims
	Report Structure

	Background
	Gameplay
	Genre
	Platform
	Gameplay
	Balancing

	Quality
	Graphics
	Bugs

	Business
	Monetisation
	Marketing

	Post-Release
	Conclusion

	Specifications
	Gameplay Requirements
	AI Requirements
	UI Requirements
	Graphical Requirements

	Design and Implementation
	Player Controls
	Player Movement
	Other Controls
	Pause
	View Mode

	Player Interaction
	Level Loading
	Dog Companion

	AI
	Spawning
	Behaviour
	Choose Action
	Idling, Walking, Running
	Flocking
	Destination Reset

	Levels
	Level Loading
	Road Movement
	Obstacles and Power-ups
	Spawning
	Behaviour

	UI
	Start Interface
	Pause Interface
	Bulletin Board Interface
	Level Over Interface
	Level Overlay

	Graphics
	Environment
	Models
	Hub
	Levels

	Characters
	Models
	Animation

	Scrapped Features
	Saving
	Reward System
	AI Responses

	User Guide
	Technical Specifications
	User Controls
	Gameplay
	Hub Gameplay
	Level Gameplay

	Interface
	Start Interface
	Pause Interface
	Bulletin Interface
	Level Over Interface

	Testing
	White-box Testing
	Black-box Testing
	Conclusion

	Evaluation
	User Evaluation
	User Feedback
	Improvements

	Specification Evaluation
	Gameplay requirements
	Enjoyable to play?
	Ability to explore hub scene, with appropriate collisions and interactions?
	Ability to access infinite runner levels from various points in the hub scene?
	Infinite runner levels with moving roads, randomly spawned obstacles or power-ups, life system, and score system?
	Appropriate balancing - in terms of level difficulty, overall player control sensitivity/speed, and AI action weighting?
	Reward system - hat shop, ability to purchase hats for stars?

	AI requirements
	Ability to perform a variety of actions: idling, walking, running,and flocking?
	Ability to perform actions in a weighted fashion?
	Ability to gain a dog that follows the player upon interacting with the dog AI?
	Ability to express discontent upon collision with the player?

	UI requirements
	Overall consistent, thematic, and stylistic design?
	Start menu - capable of starting or quitting the game?
	Pause menu - capable of pausing game from hub or levels, and quitting the game?
	Bulletin menu - contains details about controls and gameplay to inform the player?
	Level UI - capable of displaying updated lives and score

	Graphical requirements
	Overall consistent, thematic, and stylistic design?
	Appropriate sizing and placement of models?
	Believable walk, run, and idle animation cycles?

	Conclusion

	Conclusion
	Overview
	Future Work
	Final Comments

	Bibliography
	Walkies Code
	AIBehaviour.cs
	AIDogBehaviour.cs
	AISpawn.cs
	BulletinUI.cs
	LevelLoad.cs
	LevelOverMenu.cs
	LevelOverUIText.cs
	LevelPauseMenu.cs
	LevelPlayerController.cs
	LevelUIText.cs
	MoveFloor.cs
	PauseMenu.cs
	PlayerController.cs
	SpawnBehaviour.cs
	StartMenu.cs

	Walkies Assets
	Walkies Survey
	Weekly Logs
	Week 1 – w/c 21/01/2019
	Week 2 – w/c 28/01/2019
	Week 3 – w/c 4/02/2019
	Week 4 – w/c 11/02/2019
	Week 5 – w/c 18/02/2019
	Week 6 – w/c 25/02/2019
	Week 7 – w/c 4/03/2019
	Week 8 – w/c 11/03/2019
	Week 9 – w/c 18/03/2019
	Week 10 – w/c 25/03/2019

	Original Proposal
	Introduction
	Methods/Skills
	Project Evaluating
	Project Planning
	References

	Design Document
	Overview
	Controls
	Levels
	Environment
	GUI
	Other
	Hat shop
	Day/Night system
	Weather system
	Loading screen

	Preliminary Project Report
	Introduction
	Aims and Objectives
	Controls
	Game levels
	Game Environment
	GUI
	Other
	Summary

	Methods
	Project Plan
	Progress to Date
	Planned Work
	Appendix
	Appendix A

	References

